Files
chrony/test/unit/quantiles.c
Miroslav Lichvar d22c8fbcb2 quantiles: add parameter to limit negative step
Add a new parameter to limit the negative value of the step state
variable. It's set as a maximum delay in number of updates before the
actual step applied to the quantile estimate starts growing from the
minimum step when the input value is consistently larger or smaller than
the estimate.

This prevents the algorithm from effectively becoming the slower 1U
variant if the quantile estimate is stable most of the time.

Set it to 100 updates for the NTP delay and 1000 updates for the hwclock
delay. An option could be added later to make it configurable.
2024-11-21 16:00:23 +01:00

97 lines
2.8 KiB
C

/*
**********************************************************************
* Copyright (C) Miroslav Lichvar 2022
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
**********************************************************************
*/
#include <local.h>
#include "test.h"
#include <quantiles.c>
void
test_unit(void)
{
int i, j, k, min_k, max_k, q, r, in_order, out_order;
QNT_Instance inst;
double x, x2;
in_order = out_order = 0;
for (i = 0; i < 100; i++) {
r = random() % 10 + 1;
q = random() % 20 + 2;
do {
min_k = random() % (q - 1) + 1;
max_k = random() % (q - 1) + 1;
} while (min_k > max_k);
inst = QNT_CreateInstance(min_k, max_k, q, r, 900, 1e-9);
TEST_CHECK(min_k == QNT_GetMinK(inst));
TEST_CHECK(max_k == QNT_GetMaxK(inst));
TEST_CHECK(fabs(QNT_GetMinStep(inst) - 1e-9) < 1e-12);
for (j = 0; j < 3000; j++) {
x = TST_GetRandomDouble(0.0, 2e-6);
QNT_Accumulate(inst, x);
for (k = min_k; k < max_k; k++)
if (j < max_k - min_k) {
TEST_CHECK(QNT_GetQuantile(inst, k) <= QNT_GetQuantile(inst, k + 1));
} else if (j > 1000) {
if (QNT_GetQuantile(inst, k) <= QNT_GetQuantile(inst, k + 1))
in_order++;
else
out_order++;
}
}
QNT_Reset(inst);
TEST_CHECK(inst->n_set == 0);
for (j = 0; j < 3; j++) {
QNT_Reset(inst);
x = (i + 950) / 1e9;
if (random() % 10)
x2 = (i + 951) / 1e9;
else
x2 = x;
for (k = 0; k < 1000; k++)
QNT_Accumulate(inst, random() % 2 ? x : x2);
for (k = 0; k < inst->n_quants; k++) {
TEST_CHECK(inst->quants[k].est > x - 0.4e-9);
TEST_CHECK(inst->quants[k].est < x2 + 0.4e-9);
TEST_CHECK(inst->quants[k].step < -15e-9);
TEST_CHECK(inst->quants[k].step > -901e-9);
if (min_k * 2 == q && k < inst->repeat) {
if (x == x2) {
TEST_CHECK(inst->quants[k].step < -750e-9);
TEST_CHECK(inst->quants[k].step > -901e-9);
} else {
TEST_CHECK(inst->quants[k].step < -350e-9);
TEST_CHECK(inst->quants[k].step > -600e-9);
}
}
}
}
QNT_DestroyInstance(inst);
}
TEST_CHECK(in_order > 100 * out_order);
}