2025-04-27 07:49:33 -04:00

569 lines
19 KiB
C

/*++
Copyright (c) 1989 Microsoft Corporation
Module Name:
smbce.h
Abstract:
This module defines all functions, along with implementations for inline functions
related to accessing the SMB connection engine
--*/
#ifndef _SMBCE_H_
#define _SMBCE_H_
#define SECURITY_KERNEL
#define SECURITY_NTLM
#include "security.h"
#include "secint.h"
//
// The SMB protocol has a number of dialects. These reflect the extensions made
// to the core protocol over a period of time to cater to increasingly sophisticated
// file systems. The connection engine must be capable of dealing with different
// dialects implemented by server. The underlying Transport mechanism is used to
// uniquely identify the file server and the SMB protocol furnishes the remaining
// identification information to uniquely map an SMB onto a particular file opened by
// a particular client. The three important pieces of information are the SMB_TREE_ID,
// SMB_FILE_ID and SMB_USER_ID. These identify the particular connection made by a
// client machine, the particular file opened on that connection, and the user on
// behalf of whom the file has been opened. Note that there could be multiple
// connections from a client machine to a server machine. Therefore the unique id. is
// really connection based rather than machine based. The SMB connection engine
// data structures are built around these concepts.
//
// The known SMB dialects are as follows.
//
typedef enum _SMB_DIALECT_ {
PCNET1_DIALECT,
XENIXCORE_DIALECT,
MSNET103_DIALECT,
LANMAN10_DIALECT,
WFW10_DIALECT,
LANMAN12_DIALECT,
LANMAN21_DIALECT,
NTLANMAN_DIALECT
} SMB_DIALECT, *PSMB_DIALECT;
//
// Dialect flags
//
// These flags describe the various and sundry capabilities that
// a server can provide. I essentially just lifted this list from rdr1 so that I
// could also use the level2,3 of getconnectinfo which was also just lifted from rdr1.
// Many of these guys you can get directly from the CAPS field of the negotiate response but others
// you cannot. These is a table in the negotiate code that fills in the stuff that is just inferred
// from the dialect negotiated (also, just lifted from rdr1....a veritable fount of just info.)
//
// Another set of capabilities is defined in smbce.h....perhaps these should go there or vice versa.
// The advantage to having them here is that this file has to be included by the aforementioned getconfiginfo code
// up in the wrapper.
//
#define DF_CORE 0x00000001 // Server is a core server
#define DF_MIXEDCASEPW 0x00000002 // Server supports mixed case password
#define DF_OLDRAWIO 0x00000004 // Server supports MSNET 1.03 RAW I/O
#define DF_NEWRAWIO 0x00000008 // Server supports LANMAN Raw I/O
#define DF_LANMAN10 0x00000010 // Server supports LANMAN 1.0 protocol
#define DF_LANMAN20 0x00000020 // Server supports LANMAN 2.0 protocol
#define DF_MIXEDCASE 0x00000040 // Server supports mixed case files
#define DF_LONGNAME 0x00000080 // Server supports long named files
#define DF_EXTENDNEGOT 0x00000100 // Server returns extended negotiate
#define DF_LOCKREAD 0x00000200 // Server supports LockReadWriteUnlock
#define DF_SECURITY 0x00000400 // Server supports enhanced security
#define DF_NTPROTOCOL 0x00000800 // Server supports NT semantics
#define DF_SUPPORTEA 0x00001000 // Server supports extended attribs
#define DF_LANMAN21 0x00002000 // Server supports LANMAN 2.1 protocol
#define DF_CANCEL 0x00004000 // Server supports NT style cancel
#define DF_UNICODE 0x00008000 // Server supports unicode names.
#define DF_NTNEGOTIATE 0x00010000 // Server supports NT style negotiate.
#define DF_LARGE_FILES 0x00020000 // Server supports large files.
#define DF_NT_SMBS 0x00040000 // Server supports NT SMBs
#define DF_RPC_REMOTE 0x00080000 // Server is administrated via RPC
#define DF_NT_STATUS 0x00100000 // Server returns NT style statuses
#define DF_OPLOCK_LVL2 0x00200000 // Server supports level 2 oplocks.
#define DF_TIME_IS_UTC 0x00400000 // Server time is in UTC.
#define DF_WFW 0x00800000 // Server is Windows for workgroups.
#define DF_KERBEROS 0x01000000 // Server does kerberos authentication
#define DF_TRANS2_FSCTL 0x02000000 // Server accepts remoted fsctls in tran2s
#define DF_DFS_TRANS2 0x04000000 // Server accepts Dfs related trans2
// functions. Can this be merged with
// DF_TRANS2_FSCTL?
#define DF_NT_FIND 0x08000000 // Server supports NT infolevels
#define DF_W95 0x10000000 // this is a win95 server
//
// The SMBCE_NET_ROOT encapsulates the information pertaining to a share on a server. At the
// SMBCE level this corresponds to the TreeId that needs to be included as part of every SMB
// exchanged.
//
//we restrict to the first 7 characters (HPFS386)
#define SMB_MAXIMUM_SUPPORTED_VOLUME_LABEL 7
typedef struct _SMBCE_NET_ROOT_ {
NET_ROOT_TYPE NetRootType;
SMB_TREE_ID TreeId;
SMB_USER_ID UserId;
ULONG MaximumReadBufferSize;
LIST_ENTRY ClusterSizeSerializationQueue;
ULONG FileSystemAttributes;
LONG MaximumComponentNameLength;
union {
struct {
USHORT FileSystemNameLength;
WCHAR FileSystemName[SMB_MAXIMUM_SUPPORTED_VOLUME_LABEL];
};
struct {
USHORT Pad2;
UCHAR FileSystemNameALength;
UCHAR FileSystemNameA[SMB_MAXIMUM_SUPPORTED_VOLUME_LABEL];
UCHAR Pad; //this field is used for a null in a dbgprint; don't move it
};
};
//ULONG ClusterSize;
} SMBCE_NET_ROOT, *PSMBCE_NET_ROOT;
//
// There are two levels of security in the SMB protocol. User level security and Share level
// security. Corresponding to each user in the user level security mode there is a session.
//
// Typically the password, user name and domain name strings associated with the session entry
// revert to the default values, i.e., they are zero. In the event that they are not zero the
// SessionString represents a concatenated version of the password,user name and domain name in
// that order. This representation in a concatenated way yields us a savings of atleast 3
// USHORT's over other representations.
//
typedef enum _SECURITY_MODE_ {
SECURITY_MODE_SHARE_LEVEL = 0,
SECURITY_MODE_USER_LEVEL = 1
} SECURITY_MODE, *PSECURITY_MODE;
#define SMBCE_SHARE_LEVEL_SERVER_USERID 0xffffffff
typedef enum _SESSION_TYPE_ {
LANMAN_SESSION,
} SESSION_TYPE, *PSESSION_TYPE;
#define SMBCE_SESSION_FLAGS_PARAMETERS_ALLOCATED (0x1)
typedef struct _SMBCE_SESSION_ {
SESSION_TYPE Type;
SMB_USER_ID UserId;
// Flags associated with the session.
ULONG Flags;
LUID LogonId;
PUNICODE_STRING pUserName;
PUNICODE_STRING pPassword;
PUNICODE_STRING pUserDomainName;
UCHAR UserSessionKey[MSV1_0_USER_SESSION_KEY_LENGTH];
UCHAR LanmanSessionKey[MSV1_0_LANMAN_SESSION_KEY_LENGTH];
// The credential and context handles.
CtxtHandle SecurityContextHandle;
CredHandle CredentialHandle;
} SMBCE_SESSION, *PSMBCE_SESSION;
extern VOID
UninitializeSecurityContextsForSession(PSMBCE_SESSION pSession);
//
// SMBCE_*_SERVER -- This data structure encapsulates all the information related to a server.
// Since there are multiple dialects of the SMB protocol, the capabilities as well as the
// actions that need to be taken at the client machine are very different.
//
// Owing to the number of dialects of the SMB protocol we have two design possibilities.
// Either we define an all encompassing data structure and have a code path that
// uses the dialect and the capabilities of the connection to determine the action
// required, or we use a subclassing mechanism associated with a dispatch vector.
// The advantage of the second mechanism is that it can be developed incrementally and
// it is very easily extensible. The disadvantage of this mechanism is that it can
// lead to a very large footprint, if sufficient care is not exercised during
// factorization and we could have lots and lots of procedure calls which has an
// adverse effect on the code generated.
//
// We will adopt the second approach ( Thereby implicitly defining the metrics by
// which the code should be evaluated !! ).
//
// The types of SMBCE_SERVER's can be classified in the following hierarchy
//
// SMBCE_SERVER
//
// SMBCE_USER_LEVEL_SERVER
//
// SMBCE_NT_SERVER
//
// SMBCE_SHARE_LEVEL_SERVER
//
// The dispatch vector which defines the set of methods supported by all the connections
// (virtual functions in C++ terminology) are as follows
//
#define RAW_READ_CAPABILITY 0x0001
#define RAW_WRITE_CAPABILITY 0x0002
#define ECHO_PROBE_IDLE 0x1
#define ECHO_PROBE_SEND 0x2
#define ECHO_PROBE_AWAITING_RESPONSE 0x3
#define ECHO_PROBE_LIMIT (10)
#define CRYPT_TEXT_LEN MSV1_0_CHALLENGE_LENGTH
typedef struct _NTLANMAN_SERVER_ {
ULONG NtCapabilities;
} NTLANMAN_SERVER, *PNTLANMAN_SERVER;
typedef struct _SMBCE_SERVER_ {
// the server version count
ULONG Version;
// the dispatch vector
struct _SMBCE_SERVER_DISPATCH_VECTOR_ *pDispatch;
// the SMB dialect
SMB_DIALECT Dialect;
// More Server Capabilities
ULONG DialectFlags;
// the session key
ULONG SessionKey;
// Security mode supported on the server
SECURITY_MODE SecurityMode;
// Time zone bias for conversion.
LARGE_INTEGER TimeZoneBias;
LONG SmbsReceivedSinceLastStrobe;
// Maximum negotiated buffer size.
ULONG MaximumBufferSize;
// maximum buffer size for read operations
ULONG MaximumDiskFileReadBufferSize;
ULONG MaximumNonDiskFileReadBufferSize;
// Maximum number of multiplexed requests
USHORT MaximumRequests;
// Maximum number of VC's
USHORT MaximumVCs;
USHORT EchoProbesSent;
// Server Capabilities
USHORT Capabilities;
UCHAR EchoProbeState;
// encrypt passwords
BOOLEAN EncryptPasswords;
// distinguishes a loopback connections
BOOLEAN IsLoopBack;
USHORT EncryptionKeyLength;
UCHAR EncryptionKey[CRYPT_TEXT_LEN];
// Dialect specific information
union {
NTLANMAN_SERVER NtServer;
};
} SMBCE_SERVER, *PSMBCE_SERVER;
typedef
NTSTATUS
(*PBUILD_SESSION_SETUP_SMB)(
IN OUT struct _SMB_EXCHANGE *pExchange,
IN OUT PGENERIC_ANDX pSmb,
IN OUT PULONG pBufferSize
);
typedef
NTSTATUS
(*PBUILD_TREE_CONNECT_SMB)(
IN OUT struct _SMB_EXCHANGE *pExchange,
IN OUT PGENERIC_ANDX pSmb,
IN OUT PULONG pBufferSize
);
typedef struct _SMBCE_SERVER_DISPATCH_VECTOR_ {
PBUILD_SESSION_SETUP_SMB BuildSessionSetup;
PBUILD_TREE_CONNECT_SMB BuildTreeConnect;
} SMBCE_SERVER_DISPATCH_VECTOR, *PSMBCE_SERVER_DISPATCH_VECTOR;
#define SMBCE_SERVER_DIALECT_DISPATCH(pServer,Routine,Arguments) \
(*((pServer)->pDispatch->Routine))##Arguments
//
// Though the SMB protocol permits multiple number of VC's to be associated with a particular
// connection to a share, the bulk transfer of data is done in the raw mode. In this mode of
// operation the SMB protocol does not permit multiple outstanding requests.
// In the SMB protocol a number of requests can be multiplexed along a connection to the server
// There are certain kind of requests which can be completed on the client, i.e., no
// acknowledgement is neither expected nor received. In these cases the send call is completed
// synchronoulsy. On the other hand there is a second class of sends which cannot be resumed
// locally till the appropriate acknowledgement is recieved from the server. In such cases a
// list of requests is built up with each VC. On receipt of the appropriate acknowledgement
// these requests are resumed.
//
typedef enum _SMBCE_VC_STATE_ {
SMBCE_VC_STATE_MULTIPLEXED,
SMBCE_VC_STATE_RAW,
SMBCE_VC_STATE_DISCONNECTED,
} SMBCE_VC_STATE, *PSMBCE_VC_STATE;
typedef struct _SMBCE_VC_ {
RXCE_VC_HANDLE hVc;
SMBCE_VC_STATE State;
} SMBCE_VC, *PSMBCE_VC;
// The SMBCE engine process all requests in an asychronous fashion. Therefore for synchronous
// requests an additional mechanism is required for synchronization. The following data structure
// provides an easy way for implementing this synchronization.
//
// NOTE: For asynchronous resumption contexts the resumption routine can be invoked
// at DPC level.
#define SMBCE_RESUMPTION_CONTEXT_FLAG_ASYNCHRONOUS (0x1)
typedef struct SMBCE_RESUMPTION_CONTEXT {
ULONG Flags;
NTSTATUS Status; // the status
PVOID pContext; // a void pointer for clients to add additional context information
union {
PRX_WORKERTHREAD_ROUTINE pRoutine; // asynchronous contexts
KEVENT Event; // the event for synchronization
};
} SMBCE_RESUMPTION_CONTEXT, *PSMBCE_RESUMPTION_CONTEXT;
#define SmbCeIsResumptionContextAsynchronous(pResumptionContext) \
((pResumptionContext)->Flags & SMBCE_RESUMPTION_CONTEXT_FLAG_ASYNCHRONOUS)
INLINE VOID
SmbCeInitializeResumptionContext(
PSMBCE_RESUMPTION_CONTEXT pResumptionContext)
{
KeInitializeEvent(&(pResumptionContext)->Event,NotificationEvent,FALSE);
pResumptionContext->Status = STATUS_SUCCESS;
pResumptionContext->Flags = 0;
pResumptionContext->pContext = NULL;
}
INLINE VOID
SmbCeInitializeAsynchronousResumptionContext(
PSMBCE_RESUMPTION_CONTEXT pResumptionContext,
PRX_WORKERTHREAD_ROUTINE pResumptionRoutine,
PVOID pResumptionRoutineParam)
{
pResumptionContext->Status = STATUS_SUCCESS;
pResumptionContext->Flags = SMBCE_RESUMPTION_CONTEXT_FLAG_ASYNCHRONOUS;
pResumptionContext->pContext = pResumptionRoutineParam;
pResumptionContext->pRoutine = pResumptionRoutine;
}
INLINE VOID
SmbCeSuspend(
PSMBCE_RESUMPTION_CONTEXT pResumptionContext)
{
ASSERT(!(pResumptionContext->Flags & SMBCE_RESUMPTION_CONTEXT_FLAG_ASYNCHRONOUS));
KeWaitForSingleObject(
&pResumptionContext->Event,
Executive,
KernelMode,
FALSE,
NULL);
}
INLINE VOID
SmbCeResume(
PSMBCE_RESUMPTION_CONTEXT pResumptionContext)
{
if (!(pResumptionContext->Flags & SMBCE_RESUMPTION_CONTEXT_FLAG_ASYNCHRONOUS)) {
KeSetEvent(&(pResumptionContext)->Event,0,FALSE);
} else {
if (RxShouldPostCompletion()) {
RxDispatchToWorkerThread(
MRxIfsDeviceObject,
CriticalWorkQueue,
pResumptionContext->pRoutine,
pResumptionContext->pContext);
} else {
(pResumptionContext->pRoutine)(pResumptionContext->pContext);
}
}
}
//
// The SMBCE_REQUEST struct encapsulates the continuation context associated. Typically
// the act of sending a SMB along an exchange results in a SMBCE_REQUEST structure being
// created with sufficient context information to resume the exchange upon reciept of
// response from the serve. The SMBCE_REQUEST conatins ebough information to identify
// the SMB for which the response is being obtained followed by enough context information
// to resume the exchange.
//
typedef enum _SMBCE_OPERATION_ {
SMBCE_TRANCEIVE,
SMBCE_RECEIVE,
SMBCE_SEND,
SMBCE_ASYNCHRONOUS_SEND,
SMBCE_ACQUIRE_MID
} SMBCE_OPERATION, *PSMBCE_OPERATION;
typedef enum _SMBCE_REQUEST_TYPE_ {
ORDINARY_REQUEST,
COPY_DATA_REQUEST,
RECONNECT_REQUEST,
ACQUIRE_MID_REQUEST
} SMBCE_REQUEST_TYPE, *PSMBCE_REQUEST_TYPE;
typedef struct _SMBCE_GENERIC_REQUEST_ {
SMBCE_REQUEST_TYPE Type;
// the exchange instance that originated this SMB
struct _SMB_EXCHANGE * pExchange;
} SMBCE_GENERIC_REQUEST, *PSMBCE_GENERIC_REQUEST;
typedef struct _SMBCE_REQUEST_ {
SMBCE_GENERIC_REQUEST;
// the type of request
SMBCE_OPERATION Operation;
// the virtual circuit along which this request was sent.
RXCE_VC_HANDLE hVc;
// MPX Id of outgoing request.
SMB_MPX_ID Mid;
// the pedigree of the request
SMB_TREE_ID TreeId; // The Tree Id.
SMB_FILE_ID FileId; // The file id.
SMB_USER_ID UserId; // User Id. for cancel.
SMB_PROCESS_ID ProcessId; // Process Id. for cancel.
PMDL pSendBuffer;
ULONG BytesSent;
} SMBCE_REQUEST, *PSMBCE_REQUEST;
typedef struct _SMBCE_COPY_DATA_REQUEST_ {
SMBCE_GENERIC_REQUEST;
// the virtual circuit along which this request was sent.
RXCE_VC_HANDLE hVc;
// the buffer into whihc data is being copied.
PVOID pBuffer;
// the actual number of bytes copied
ULONG BytesCopied;
} SMBCE_COPY_DATA_REQUEST, *PSMBCE_COPY_DATA_REQUEST;
typedef struct _SMBCE_RECONNECT_REQUEST_ {
SMBCE_GENERIC_REQUEST;
} SMBCE_RECONNECT_REQUEST, *PSMBCE_RECONNECT_REQUEST;
typedef struct _SMBCE_MID_REQUEST_ {
SMBCE_GENERIC_REQUEST;
PSMBCE_RESUMPTION_CONTEXT pResumptionContext;
} SMBCE_MID_REQUEST, *PSMBCE_MID_REQUEST;
#define ECHO_PROBE_CANCELLED_FLAG (0x1)
typedef struct _MRXSMB_ECHO_PROCESSING_CONTEXT_ {
RX_WORK_ITEM WorkItem;
KEVENT CancelCompletionEvent;
PVOID pEchoSmb;
ULONG Flags;
ULONG EchoSmbLength;
PMDL pEchoSmbMdl;
NTSTATUS Status;
LARGE_INTEGER Interval;
} MRXSMB_ECHO_PROCESSING_CONTEXT, *PMRXSMB_ECHO_PROCESSING_CONTEXT;
//
// extern function declarations
//
extern NTSTATUS
BuildSessionSetupSmb(
struct _SMB_EXCHANGE *pExchange,
PGENERIC_ANDX pAndXSmb,
PULONG pAndXSmbBufferSize);
extern NTSTATUS
CoreBuildTreeConnectSmb(
struct _SMB_EXCHANGE *pExchange,
PGENERIC_ANDX pAndXSmb,
PULONG pAndXSmbBufferSize);
extern NTSTATUS
LmBuildTreeConnectSmb(
struct _SMB_EXCHANGE *pExchange,
PGENERIC_ANDX pAndXSmb,
PULONG pAndXSmbBufferSize);
extern NTSTATUS
NtBuildTreeConnectSmb(
struct _SMB_EXCHANGE *pExchange,
PGENERIC_ANDX pAndXSmb,
PULONG pAndXSmbBufferSize);
extern NTSTATUS
MRxIfsInitializeEchoProcessingContext();
extern NTSTATUS
MRxIfsTearDownEchoProcessingContext();
extern NTSTATUS
BuildNegotiateSmb(
PVOID *pSmbBufferPointer,
PULONG pSmbBufferLength);
extern NTSTATUS
ParseNegotiateResponse(
PSMBCE_SERVER pServer,
PUNICODE_STRING pDomainName,
PSMB_HEADER pSmbHeader,
ULONG AvailableLength,
PULONG pConsumedLength);
extern VOID
SmbCeProbeServers(
PVOID pContext);
extern struct _MINIRDR_DISPATCH MRxSmbDispatch;
extern MRXSMB_ECHO_PROCESSING_CONTEXT EchoProbeContext;
#endif // _SMBCE_H_