2025-04-27 07:49:33 -04:00

545 lines
17 KiB
C

/******************************Module*Header*******************************\
* Module Name: mesh.c
*
* Surface of revolution support routines. Adapted from OttoB's screen saver
* code.
*
* Created: 14-May-1994 17:40:51
*
* Copyright (c) 1994 Microsoft Corporation
*
\**************************************************************************/
#include <stdlib.h>
#include <windows.h>
#include <GL\gl.h>
#include <string.h>
#include <math.h>
#include "mesh.h"
#include "globals.h"
/******************************Public*Routine******************************\
* newMesh
*
* Allocate memory for the mesh structure to accomodate the specified number
* of points and faces.
*
* numAxial is the number of tiers (or rings) in the surface of revolution
* (can be thought of as the number of faces "high" in the axial direction.
*
* numCircum is the number of faces around the circumference.
*
* In other words, if the surface of revolution were unrolled, the dimensions
* of the mesh would by numAxial by numCircum.
*
* History:
* 14-May-1994 -by- Gilman Wong [gilmanw]
* Taken from OttoB's screen saver utility code.
\**************************************************************************/
BOOL newMesh(MESH *mesh, int numAxial, int numCircum)
{
int nFaces = numAxial * numCircum;
int nPts = 4 * nFaces;
mesh->numFaces = 0;
mesh->numPoints = 0;
mesh->numFacesAxial = numAxial;
mesh->numFacesCircum = numCircum;
if (nPts) {
mesh->pts = LocalAlloc(LMEM_FIXED, (LONG)nPts * (LONG)sizeof(POINT3D));
mesh->norms = LocalAlloc(LMEM_FIXED, (LONG)nPts * (LONG)sizeof(POINT3D));
}
mesh->faces = LocalAlloc(LMEM_FIXED, (LONG)nFaces * (LONG)sizeof(MFACE));
// Did all the memory get allocated?
if ( (!nPts || (mesh->pts && mesh->norms))
&& mesh->faces )
return TRUE;
else
{
if (nPts)
{
if (mesh->pts)
LocalFree(mesh->pts);
if (mesh->norms)
LocalFree(mesh->norms);
}
if (mesh->faces)
LocalFree(mesh->faces);
return FALSE;
}
}
/******************************Public*Routine******************************\
* delMesh
*
* Delete the allocated portions of the MESH structure.
*
* History:
* 14-May-1994 -by- Gilman Wong [gilmanw]
* Taken from OttoB's screen saver utility code.
\**************************************************************************/
void delMesh(MESH *mesh)
{
LocalFree(mesh->pts);
LocalFree(mesh->norms);
LocalFree(mesh->faces);
}
/******************************Public*Routine******************************\
* iPtInList
*
* Add a vertex and its normal to the mesh. If the vertex already exists,
* add in the normal to the existing normal (we want the average normal
* at the vertex).
*
* History:
* 14-May-1994 -by- Gilman Wong [gilmanw]
* Taken from OttoB's screen saver utility code.
\**************************************************************************/
static int iPtInList(MESH *mesh, POINT3D *p, POINT3D *norm, int start)
{
int i;
POINT3D *pts = mesh->pts + start;
for (i = start; i < mesh->numPoints; i++, pts++) {
//if ((pts->x == p->x) && (pts->y == p->y) && (pts->z == p->z)) {
if ( fabs(pts->x - p->x) < ZERO_EPS &&
fabs(pts->y - p->y) < ZERO_EPS &&
fabs(pts->z - p->z) < ZERO_EPS )
{
mesh->norms[i].x += norm->x;
mesh->norms[i].y += norm->y;
mesh->norms[i].z += norm->z;
return i;
}
}
mesh->pts[i] = *p;
mesh->norms[i] = *norm;
mesh->numPoints++;
return i;
}
/******************************Public*Routine******************************\
* revolveSurface
*
* Takes the set of points in curve and fills the mesh structure with a
* surface of revolution. The surface consists of quads made up of the
* points in curve rotated about the y-axis. The number of increments
* in the revolution is determined by the steps parameter.
*
* Returns:
* TRUE if successful, FALSE otherwise.
*
* History:
* 14-May-1994 -by- Gilman Wong [gilmanw]
* Taken from OttoB's screen saver utility code.
\**************************************************************************/
BOOL revolveSurface(MESH *mesh, CURVE *curve, int steps)
{
BOOL bRet = FALSE;
int i;
int j;
int facecount = 0;
double rotation = 0.0;
double rotInc;
double cosVal;
double sinVal;
POINT3D norm;
POINT3D *a = (POINT3D *) NULL;
POINT3D *b = (POINT3D *) NULL;
// Allocate temp memory for curve points rotated about y-axis.
a = (POINT3D *) LocalAlloc(LMEM_FIXED, 2*curve->numPoints*sizeof(POINT3D));
if (!a)
goto revolveSurface_cleanup;
b = a + curve->numPoints;
// Rotation increment.
//rotInc = (2.0 * PI) / (double)(steps - 1);
rotInc = (2.0 * PI) / (double) steps;
// Allocate mesh structure.
if (!newMesh(mesh, (curve->numPoints - 1), steps))
goto revolveSurface_cleanup;
// Rotate the curve in increments of rotInc.
for (j = 0; j < steps; j++, rotation += rotInc)
{
// Compute the quads at the current rotation. To do this, we need to
// compute the curve at rotation and rotation+rotInc.
cosVal = cos(rotation);
sinVal = sin(rotation);
for (i = 0; i < curve->numPoints; i++)
{
a[i].x = (float) (curve->pts[i].x * cosVal + curve->pts[i].z * sinVal);
a[i].y = (float) (curve->pts[i].y);
a[i].z = (float) (curve->pts[i].z * cosVal - curve->pts[i].x * sinVal);
}
cosVal = cos(rotation + rotInc);
sinVal = sin(rotation + rotInc);
for (i = 0; i < curve->numPoints; i++)
{
b[i].x = (float) (curve->pts[i].x * cosVal + curve->pts[i].z * sinVal);
b[i].y = (float) (curve->pts[i].y);
b[i].z = (float) (curve->pts[i].z * cosVal - curve->pts[i].x * sinVal);
}
for (i = 0; i < (curve->numPoints - 1); i++)
{
calcNorm(&norm, &b[i + 1], &b[i], &a[i]);
if ((norm.x * norm.x) + (norm.y * norm.y) + (norm.z * norm.z) < 0.9)
calcNorm(&norm, &a[i], &a[i+1], &b[i + 1]);
mesh->faces[facecount].material = j & 7;
mesh->faces[facecount].norm = norm;
mesh->faces[facecount].p[0] = iPtInList(mesh, &b[i], &norm, 0);
mesh->faces[facecount].p[1] = iPtInList(mesh, &a[i], &norm, 0);
mesh->faces[facecount].p[2] = iPtInList(mesh, &b[i + 1], &norm, 0);
mesh->faces[facecount].p[3] = iPtInList(mesh, &a[i + 1], &norm, 0);
mesh->numFaces++;
facecount++;
}
}
normalizeNorms(mesh->norms, mesh->numPoints);
bRet = TRUE;
revolveSurface_cleanup:
if (a)
LocalFree(a);
return bRet;
}
void updateObject(MESH *mesh, BOOL bSmooth)
{
int i, j;
int cnt;
int a, b, c, d;
int aOffs, bOffs, cOffs, dOffs;
MFACE *faces;
POINT3D *pp;
POINT3D *pn;
MATERIAL *pmatl;
int lastC, lastD;
pp = mesh->pts;
pn = mesh->norms;
glBegin(GL_QUAD_STRIP);
for (i = 0, faces = mesh->faces, lastC = faces->p[0], lastD = faces->p[1];
i < mesh->numFaces; i++, faces++) {
a = faces->p[0];
b = faces->p[1];
if (!bSmooth) {
if ((a != lastC) || (b != lastD)) {
glNormal3fv((GLfloat *)&(faces - 1)->norm);
glVertex3fv((GLfloat *)((char *)pp +
(lastC << 3) + (lastC << 2)));
glVertex3fv((GLfloat *)((char *)pp +
(lastD << 3) + (lastD << 2)));
glEnd();
glBegin(GL_QUAD_STRIP);
}
glNormal3fv((GLfloat *)&faces->norm);
glVertex3fv((GLfloat *)((char *)pp + (a << 3) + (a << 2)));
glVertex3fv((GLfloat *)((char *)pp + (b << 3) + (b << 2)));
} else {
if ((a != lastC) || (b != lastD)) {
cOffs = (lastC << 3) + (lastC << 2);
dOffs = (lastD << 3) + (lastD << 2);
glNormal3fv((GLfloat *)((char *)pn + cOffs));
glVertex3fv((GLfloat *)((char *)pp + cOffs));
glNormal3fv((GLfloat *)((char *)pn + dOffs));
glVertex3fv((GLfloat *)((char *)pp + dOffs));
glEnd();
glBegin(GL_QUAD_STRIP);
}
aOffs = (a << 3) + (a << 2);
bOffs = (b << 3) + (b << 2);
glNormal3fv((GLfloat *)((char *)pn + aOffs));
glVertex3fv((GLfloat *)((char *)pp + aOffs));
glNormal3fv((GLfloat *)((char *)pn + bOffs));
glVertex3fv((GLfloat *)((char *)pp + bOffs));
}
lastC = faces->p[2];
lastD = faces->p[3];
}
if (!bSmooth) {
glNormal3fv((GLfloat *)&(faces - 1)->norm);
glVertex3fv((GLfloat *)((char *)pp + (lastC << 3) + (lastC << 2)));
glVertex3fv((GLfloat *)((char *)pp + (lastD << 3) + (lastD << 2)));
} else {
cOffs = (lastC << 3) + (lastC << 2);
dOffs = (lastD << 3) + (lastD << 2);
glNormal3fv((GLfloat *)((char *)pn + cOffs));
glVertex3fv((GLfloat *)((char *)pp + cOffs));
glNormal3fv((GLfloat *)((char *)pn + dOffs));
glVertex3fv((GLfloat *)((char *)pp + dOffs));
}
glEnd();
}
void MakeList(GLuint listID, MESH *mesh)
{
int i, j;
int cnt;
int a, b, c, d;
int aOffs, bOffs, cOffs, dOffs;
MFACE *faces;
BOOL bSmooth;
POINT3D *pp;
POINT3D *pn;
MATERIAL *pmatl;
GLint shadeModel;
int lastC, lastD;
//glGetIntegerv(GL_SHADE_MODEL, &shadeModel);
//bSmooth = (shadeModel == GL_SMOOTH);
bSmooth = (gShadeMode == SHADE_SMOOTH_BOTH);
if (bSmooth)
MakeListAxial(listID, mesh);
glNewList(listID, GL_COMPILE);
pp = mesh->pts;
pn = mesh->norms;
glBegin(GL_QUAD_STRIP);
for (i = 0; i < mesh->numFacesAxial; i++)
{
for (j = 0, faces = &mesh->faces[i], lastC = faces->p[1], lastD = faces->p[3];
j < mesh->numFacesCircum; j++, faces += mesh->numFacesAxial)
{
a = faces->p[1];
b = faces->p[3];
if (!bSmooth) {
if ((a != lastC) || (b != lastD)) {
//glNormal3fv((GLfloat *)&((faces - 1)->norm));
glNormal3fv((GLfloat *)&(mesh->faces[i].norm));
glVertex3fv((GLfloat *) &pp[lastC]);
glVertex3fv((GLfloat *) &pp[lastD]);
//glVertex3fv((GLfloat *)((char *)pp +
// (lastC << 3) + (lastC << 2)));
//glVertex3fv((GLfloat *)((char *)pp +
// (lastD << 3) + (lastD << 2)));
glEnd();
glBegin(GL_QUAD_STRIP);
}
glNormal3fv((GLfloat *)&faces->norm);
glVertex3fv((GLfloat *) &pp[a]);
glVertex3fv((GLfloat *) &pp[b]);
//glVertex3fv((GLfloat *)((char *)pp + (a << 3) + (a << 2)));
//glVertex3fv((GLfloat *)((char *)pp + (b << 3) + (b << 2)));
} else {
if ((a != lastC) || (b != lastD)) {
cOffs = (lastC << 3) + (lastC << 2);
dOffs = (lastD << 3) + (lastD << 2);
glNormal3fv((GLfloat *) &pn[lastC]);
glVertex3fv((GLfloat *) &pp[lastC]);
glNormal3fv((GLfloat *) &pn[lastD]);
glVertex3fv((GLfloat *) &pp[lastD]);
//glNormal3fv((GLfloat *)((char *)pn + cOffs));
//glVertex3fv((GLfloat *)((char *)pp + cOffs));
//glNormal3fv((GLfloat *)((char *)pn + dOffs));
//glVertex3fv((GLfloat *)((char *)pp + dOffs));
glEnd();
glBegin(GL_QUAD_STRIP);
}
aOffs = (a << 3) + (a << 2);
bOffs = (b << 3) + (b << 2);
glNormal3fv((GLfloat *) &pn[a]);
glVertex3fv((GLfloat *) &pp[a]);
glNormal3fv((GLfloat *) &pn[b]);
glVertex3fv((GLfloat *) &pp[b]);
//glNormal3fv((GLfloat *)((char *)pn + aOffs));
//glVertex3fv((GLfloat *)((char *)pp + aOffs));
//glNormal3fv((GLfloat *)((char *)pn + bOffs));
//glVertex3fv((GLfloat *)((char *)pp + bOffs));
}
lastC = faces->p[0];
lastD = faces->p[2];
}
if (!bSmooth) {
glNormal3fv((GLfloat *)&(mesh->faces[i].norm));
glVertex3fv((GLfloat *) &pp[lastC]);
glVertex3fv((GLfloat *) &pp[lastD]);
//glVertex3fv((GLfloat *)((char *)pp + (lastC << 3) + (lastC << 2)));
//glVertex3fv((GLfloat *)((char *)pp + (lastD << 3) + (lastD << 2)));
} else {
cOffs = (lastC << 3) + (lastC << 2);
dOffs = (lastD << 3) + (lastD << 2);
glNormal3fv((GLfloat *) &pn[lastC]);
glVertex3fv((GLfloat *) &pp[lastC]);
glNormal3fv((GLfloat *) &pn[lastD]);
glVertex3fv((GLfloat *) &pp[lastD]);
//glNormal3fv((GLfloat *)((char *)pn + cOffs));
//glVertex3fv((GLfloat *)((char *)pp + cOffs));
//glNormal3fv((GLfloat *)((char *)pn + dOffs));
//glVertex3fv((GLfloat *)((char *)pp + dOffs));
}
}
glEnd();
glEndList();
}
// This version builds the strip along the axial direction.
void MakeListAxial(GLuint listID, MESH *mesh)
{
int i, j;
int cnt;
int a, b, c, d;
int aOffs, bOffs, cOffs, dOffs;
MFACE *faces;
BOOL bSmooth;
POINT3D *pp;
POINT3D *pn;
MATERIAL *pmatl;
GLint shadeModel;
int lastC, lastD;
glGetIntegerv(GL_SHADE_MODEL, &shadeModel);
bSmooth = (shadeModel == GL_SMOOTH);
glNewList(listID, GL_COMPILE);
pp = mesh->pts;
pn = mesh->norms;
glBegin(GL_QUAD_STRIP);
for (i = 0, faces = mesh->faces, lastC = faces->p[0], lastD = faces->p[1];
i < mesh->numFaces; i++, faces++) {
a = faces->p[0];
b = faces->p[1];
if (!bSmooth) {
if ((a != lastC) || (b != lastD)) {
glNormal3fv((GLfloat *)&((faces - 1)->norm));
glVertex3fv((GLfloat *)((char *)pp +
(lastC << 3) + (lastC << 2)));
glVertex3fv((GLfloat *)((char *)pp +
(lastD << 3) + (lastD << 2)));
glEnd();
glBegin(GL_QUAD_STRIP);
}
glNormal3fv((GLfloat *)&faces->norm);
//glVertex3fv((GLfloat *) &pp[a]);
//glVertex3fv((GLfloat *) &pp[b]);
glVertex3fv((GLfloat *)((char *)pp + (a << 3) + (a << 2)));
glVertex3fv((GLfloat *)((char *)pp + (b << 3) + (b << 2)));
} else {
if ((a != lastC) || (b != lastD)) {
cOffs = (lastC << 3) + (lastC << 2);
dOffs = (lastD << 3) + (lastD << 2);
//glNormal3fv((GLfloat *) &pn[c]);
//glVertex3fv((GLfloat *) &pp[c]);
//glNormal3fv((GLfloat *) &pn[d]);
//glVertex3fv((GLfloat *) &pp[d]);
glNormal3fv((GLfloat *)((char *)pn + cOffs));
glVertex3fv((GLfloat *)((char *)pp + cOffs));
glNormal3fv((GLfloat *)((char *)pn + dOffs));
glVertex3fv((GLfloat *)((char *)pp + dOffs));
glEnd();
glBegin(GL_QUAD_STRIP);
}
aOffs = (a << 3) + (a << 2);
bOffs = (b << 3) + (b << 2);
//glNormal3fv((GLfloat *) &pn[a]);
//glVertex3fv((GLfloat *) &pp[a]);
//glNormal3fv((GLfloat *) &pn[b]);
//glVertex3fv((GLfloat *) &pp[b]);
glNormal3fv((GLfloat *)((char *)pn + aOffs));
glVertex3fv((GLfloat *)((char *)pp + aOffs));
glNormal3fv((GLfloat *)((char *)pn + bOffs));
glVertex3fv((GLfloat *)((char *)pp + bOffs));
}
lastC = faces->p[2];
lastD = faces->p[3];
}
if (!bSmooth) {
glNormal3fv((GLfloat *)&((faces - 1)->norm));
glVertex3fv((GLfloat *)((char *)pp + (lastC << 3) + (lastC << 2)));
glVertex3fv((GLfloat *)((char *)pp + (lastD << 3) + (lastD << 2)));
} else {
cOffs = (lastC << 3) + (lastC << 2);
dOffs = (lastD << 3) + (lastD << 2);
glNormal3fv((GLfloat *)((char *)pn + cOffs));
glVertex3fv((GLfloat *)((char *)pp + cOffs));
glNormal3fv((GLfloat *)((char *)pn + dOffs));
glVertex3fv((GLfloat *)((char *)pp + dOffs));
}
glEnd();
glEndList();
}