import argparse import structlog from functools import partial from pathlib import Path import sys import hashlib import random import multiprocessing import concurrent.futures import time import numpy as np from src.mediautils.audio import extract_audio_from_video from src.mediautils.video import render_moments from src.editors.amplitude.editor import AmplitudeEditor from src.editors.sentiment.editor import SentimentEditor from src.math.cost import quadratic_loss from src.math.distribution import create_distribution log = structlog.get_logger() EDITORS = { 'amplitude': AmplitudeEditor, 'sentiment': SentimentEditor } ERROR_FUNCS = { 'quadratic': quadratic_loss } def main(args): # Check video existance input_file = args.file in_vid_path = Path(input_file) if not in_vid_path.is_file(): log.error("the specified input path does not exist", path=input_file) sys.exit(-1) log.info("preparing video", input_video=input_file) # Hash the video, we use this to see if we have processed this video before # and as a simple way to generate temp file names sha1 = hashlib.sha1() BUF_SIZE = 1655360 with open(in_vid_path, 'rb') as f: while True: data = f.read(BUF_SIZE) if not data: break sha1.update(data) temp_file_name = sha1.hexdigest() log.info("hash computed", hash=temp_file_name) temp_file_name = f"ale-{temp_file_name}" # Prepare the input video audio_path, audio_cached = extract_audio_from_video(str(in_vid_path.resolve()), temp_file_name) if audio_cached: log.info("using cached audio file", cache_path=audio_path) else: log.info("extracted audio", cache_path=audio_path) # Initalize Editor log.info("initializing editor", editor=args.editor) editor = EDITORS[args.editor](str(in_vid_path.resolve()), audio_path, vars(args)) log.info("initialized editor", editor=args.editor) costfunc = ERROR_FUNCS[args.cost] desired = args.duration # Generate center of large window and small window size large_window_center = random.uniform(30, 50) small_window_center = random.uniform(5, 15) # The spread multiplier, or epsilon, slowly decays as we approach the center of the gradient spread_multiplier = random.uniform(0.15, 0.18) # The decay rate, or how quickly our spread multiplier decreases as we approach the center of the gradient spread_decay = random.uniform(0.0001, 0.001) parallelism = args.parallelism # The main loop of the program starts here # we first create distributions # use workers to simultanously create many possible edits # find the best edit of the lot -> this is determined by lowest "cost" # if the best fits within our desitred time range, output, otherwise # reset the distributions using the best as the new center, then repeat # Create distribution of large and small complete = False iterations = 0 while not complete: log.info("creating distributions", large_start=large_window_center, small_start=small_window_center, spread=spread_multiplier, decay=spread_decay) large_distribution = create_distribution(large_window_center, spread_multiplier, parallelism) np.random.shuffle(large_distribution) small_distribution = create_distribution(small_window_center, spread_multiplier, parallelism) np.random.shuffle(small_distribution) # Fire off workers to generate edits moment_results = [] with concurrent.futures.ThreadPoolExecutor() as executor: futures = [] pairs = list(zip(large_distribution, small_distribution)) for pair in pairs: futures.append( executor.submit( editor.edit, pair[0], pair[1], vars(args) ) ) for future in concurrent.futures.as_completed(futures): try: moment_results.append(future.result()) except Exception: log.exception("error during editing") sys.exit(-2) moment_results costs = [] durations = [] for result in moment_results: total_duration = 0 for moment in result[0]: total_duration = total_duration + moment.get_duration() costs.append(costfunc(desired, total_duration)) durations.append(total_duration) index_min = min(range(len(costs)), key=costs.__getitem__) large_window_center = moment_results[index_min][1] small_window_center = moment_results[index_min][2] log.info("batch complete", best_large=large_window_center, best_small=small_window_center, duration=durations[index_min]) if durations[index_min] > desired * 0.95 and desired * 1.05 > durations[index_min]: log.info("found edit within target duration", target=desired, duration=durations[index_min]) out_path = Path(args.destination) log.info("rendering...") start = time.time() render_moments(moment_results[index_min][0], str(in_vid_path.resolve()), str(out_path.resolve())) log.info("render complete", duration=time.time() - start, output=str(out_path.resolve())) sys.exit(0) iterations = iterations + parallelism if iterations > 50000: log.error("could not find a viable edit in the target duration, try other params", target=desired) sys.exit(-4) spread_multiplier = spread_multiplier - spread_decay if spread_multiplier < 0: log.warn("spread reached 0, resetting") large_window_center = random.uniform(30, 50) small_window_center = random.uniform(5, 15) spread_multiplier = random.uniform(0.15, 0.18) spread_decay = random.uniform(0.0001, 0.001) if __name__ == "__main__": parser = argparse.ArgumentParser( prog="ALE", description="ALE: Automatic Linear Editor.", formatter_class=partial(argparse.HelpFormatter, width=100) ) parser.add_argument('file', help='Path to the video file to edit') parser.add_argument('duration', help='Target length of the edit, in seconds', type=int) parser.add_argument('destination', help='Edited video save location') subparsers = parser.add_subparsers(dest='editor', help='The editing algorithm to use') parser_audio_amp = subparsers.add_parser('amplitude', help='The amplitude editor uses audio amplitude moving averages to find swings from relatively quiet moments to loud moments. This is useful in videos where long moments of quiet are interspersed with loud action filled moments.') parser_audio_amp.add_argument( "--factor", default=16000, help="Subsampling factor", dest="factor", type=int, ) parser_sentiment = subparsers.add_parser('sentiment', help='The sentiment editor transcribes the speech in a video and runs sentiment analysis on the resulting text. Using moving averages, large swings in sentiment can be correlated to controversial or exciting moments. A GPU with CUDA is recommended for fast results.') parser_sentiment.add_argument( "--model", default="base", help="The size of the sentiment analysis model being used. Larger models increase computation time.", dest="model_size", choices=["base", "tiny", "small", "medium", "large"], ) parser.add_argument("-p", "--parallelism", dest="parallelism", type=int, default=multiprocessing.cpu_count() - 2, help="The number of cores to use, defaults to N - 2 cores.") parser.add_argument("--cost-function", dest="cost", choices=ERROR_FUNCS.keys(), default='quadratic') parser.add_argument( "--minduration", default=8, help="Minimum clip duration", dest="mindur", type=int, ) parser.add_argument( "--maxduration", default=15, help="Maximum clip duration", dest="maxdur", type=int, ) args = parser.parse_args() try: main(args) except Exception: log.exception("uncaught error!") sys.exit(-2) sys.exit(0)