import argparse import hashlib import multiprocessing import sys import time from functools import partial from pathlib import Path import structlog from src.utils.prereq import check_ffmpeg check_ffmpeg() from src.editors.amplitude.editor import AmplitudeEditor from src.editors.sentiment.editor import SentimentEditor from src.math.cost import quadratic_loss from src.mediautils.audio import extract_audio_from_video from src.mediautils.video import render_moments log = structlog.get_logger() EDITORS = {"amplitude": AmplitudeEditor, "sentiment": SentimentEditor} ERROR_FUNCS = {"quadratic": quadratic_loss} def main(args): # Check video existance input_file = args.file in_vid_path = Path(input_file) if not in_vid_path.is_file(): log.error("the specified input path does not exist", path=input_file) sys.exit(-1) log.info("preparing video", input_video=input_file) intro_file = args.introvidpath if intro_file is not None: intro_vid_path = Path(intro_file) if not in_vid_path.is_file(): log.error( "the specified input path does not exist for the intro", path=intro_file ) sys.exit(-1) log.info("found intro", input_video=intro_file) outro_file = args.outrovidpath if outro_file is not None: outro_vid_path = Path(outro_file) if not outro_vid_path.is_file(): log.error( "the specified input path does not exist for the outro", path=outro_file ) sys.exit(-1) log.info("found outro", input_video=outro_file) # Hash the video, we use this to see if we have processed this video before # and as a simple way to generate temp file names sha1 = hashlib.sha1() BUF_SIZE = 1655360 with open(in_vid_path, "rb") as f: while True: data = f.read(BUF_SIZE) if not data: break sha1.update(data) temp_file_name = sha1.hexdigest() log.info("hash computed", hash=temp_file_name) temp_file_name = f"ale-{temp_file_name}" # Prepare the input video audio_path, audio_cached = extract_audio_from_video( str(in_vid_path.resolve()), temp_file_name ) if audio_cached: log.info("using cached audio file", cache_path=audio_path) else: log.info("extracted audio", cache_path=audio_path) params = vars(args) params["temp_file_name"] = temp_file_name # Initalize Editor log.info("initializing editor", editor=args.editor) editor = EDITORS[args.editor](str(in_vid_path.resolve()), audio_path, params) log.info("initialized editor", editor=args.editor) costfunc = ERROR_FUNCS[args.cost] desired = args.duration result = [] try: result = editor.full_edit(costfunc, desired, vars(args)) except Exception as e: log.fatal("there was an error during editing the video", error=e) sys.exit(-1) if len(result) == 0: log.fatal("no viable edit was found for the provided parameters, please try again with different values") sys.exit(-2) log.info( "found edit within target duration", target=desired, ) out_path = Path(args.destination) log.info("rendering...") start = time.time() render_moments( result, str(in_vid_path.resolve()), str(out_path.resolve()), intro_path=intro_file, parallelism=args.parallelism, ) log.info( "render complete", duration=time.time() - start, output=str(out_path.resolve()), ) sys.exit(0) if __name__ == "__main__": parser = argparse.ArgumentParser( prog="ALE", description="ALE: Automatic Linear Editor.", formatter_class=partial(argparse.HelpFormatter, width=100), ) parser.add_argument("file", help="Path to the video file to edit") parser.add_argument( "duration", help="Target length of the edit, in seconds", type=int ) parser.add_argument("destination", help="Edited video save location") subparsers = parser.add_subparsers( dest="editor", help="The editing algorithm to use" ) parser_audio_amp = subparsers.add_parser( "amplitude", help="The amplitude editor uses audio amplitude moving averages to find swings from relatively quiet moments to loud moments. This is useful in videos where long moments of quiet are interspersed with loud action filled moments.", ) parser_audio_amp.add_argument( "--factor", default=16000, help="Subsampling factor", dest="factor", type=int, ) parser_sentiment = subparsers.add_parser( "sentiment", help="The sentiment editor transcribes the speech in a video and runs sentiment analysis on the resulting text. Using moving averages, large swings in sentiment can be correlated to controversial or exciting moments. A GPU with CUDA is recommended for fast results.", ) parser_sentiment.add_argument( "--model", default="base", help="The size of the sentiment analysis model being used. Larger models increase computation time.", dest="model_size", choices=["base", "tiny", "small", "medium", "large"], ) parser.add_argument( "-p", "--parallelism", dest="parallelism", type=int, default=multiprocessing.cpu_count() - 2, help="The number of cores to use, defaults to N - 2 cores.", ) parser.add_argument( "--cost-function", dest="cost", choices=ERROR_FUNCS.keys(), default="quadratic" ) parser.add_argument( "--min-duration", default=8, help="Minimum clip duration", dest="mindur", type=int, ) parser.add_argument( "--max-duration", default=15, help="Maximum clip duration", dest="maxdur", type=int, ) parser.add_argument( "--intro-video", default=None, help="Path to a video file to use as an intro", dest="introvidpath", type=str, ) parser.add_argument( "--outro-video", default=None, help="Path to a video file to use as an outro", dest="outrovidpath", type=str, ) parser.add_argument( "--title-slide-text", default=None, help="Text to show during a title slide. The title slide is played after any provided intro. If there is no intro, the title slide is the intro", dest="outrovidpath", type=str, ) parser.add_argument( "--title-slide-duration", default=5, help="Time, in seconds, to show a title slide for", dest="outrovidpath", type=str, ) args = parser.parse_args() try: main(args) except Exception: log.exception("uncaught error!") sys.exit(-2) sys.exit(0)