import argparse import structlog from functools import partial from pathlib import Path import sys import hashlib import random import multiprocessing import concurrent.futures import numpy as np from src.mediautils.audio import extract_audio_from_video from src.editors.amplitude.editor import AmplitudeEditor from src.editors.sentiment.editor import SentimentEditor from src.math.distribution import create_distribution log = structlog.get_logger() EDITORS = { 'amplitude': AmplitudeEditor, 'sentiment': SentimentEditor } def main(args): # Check video existance input_file = args.file in_vid_path = Path(input_file) if not in_vid_path.is_file(): log.error("the specified input path does not exist", path=input_file) sys.exit(-1) log.info("preparing video", input_video=input_file) # Hash the video, we use this to see if we have processed this video before # and as a simple way to generate temp file names sha1 = hashlib.sha1() BUF_SIZE = 1655360 with open(in_vid_path, 'rb') as f: while True: data = f.read(BUF_SIZE) if not data: break sha1.update(data) temp_file_name = sha1.hexdigest() log.info("hash computed", hash=temp_file_name) temp_file_name = f"ale-{temp_file_name}" # Prepare the input video audio_path, audio_cached = extract_audio_from_video(str(in_vid_path.resolve()), temp_file_name) if audio_cached: log.info("using cached audio file", cache_path=audio_path) else: log.info("extracted audio", cache_path=audio_path) # Initalize Editor log.info("initializing editor", editor=args.editor) editor = EDITORS[args.editor](str(in_vid_path.resolve()), audio_path, vars(args)) log.info("initialized editor", editor=args.editor) # Generate center of large window and small window size large_window_center = random.uniform(30, 50) small_window_center = random.uniform(5, 15) # The spread multiplier, or epsilon, slowly decays as we approach the center of the gradient spread_multiplier = random.uniform(0.15, 0.18) # The decay rate, or how quickly our spread multiplier decreases as we approach the center of the gradient spread_decay = random.uniform(0.0001, 0.001) log.info("creating distributions", large_start=large_window_center, small_start=small_window_center, spread=spread_multiplier, decay=spread_decay) # Create distribution of large and small parallelism = args.parallelism large_distribution = create_distribution(large_window_center, spread_multiplier, parallelism) np.random.shuffle(large_distribution) small_distribution = create_distribution(small_window_center, spread_multiplier, parallelism) np.random.shuffle(small_distribution) with concurrent.futures.ThreadPoolExecutor() as executor: futures = [] pairs = list(zip(large_distribution, small_distribution)) for pair in pairs: futures.append( executor.submit( editor.edit, pair[0], pair[1], vars(args) ) ) for future in concurrent.futures.as_completed(futures): value = future.result() log.info("got val", val=value) desired = args.duration if __name__ == "__main__": parser = argparse.ArgumentParser( prog="ALE", description="ALE: Automatic Linear Editor.", formatter_class=partial(argparse.HelpFormatter, width=100) ) parser.add_argument('file', help='Path to the video file to edit') parser.add_argument('duration', help='Target length of the edit, in seconds', type=int) parser.add_argument('destination', help='Edited video save location') subparsers = parser.add_subparsers(dest='editor', help='The editing algorithm to use') parser_audio_amp = subparsers.add_parser('amplitude', help='The amplitude editor uses audio amplitude moving averages to find swings from relatively quiet moments to loud moments. This is useful in videos where long moments of quiet are interspersed with loud action filled moments.') parser_audio_amp.add_argument( "-f", "--factor", default=16000, help="Subsampling factor", dest="factor", type=int, ) parser_audio_amp = subparsers.add_parser('sentiment', help='The sentiment editor transcribes the speech in a video and runs sentiment analysis on the resulting text. Using moving averages, large swings in sentiment can be correlated to controversial or exciting moments.') parser.add_argument("-d", "--dryrun", dest="drun", action="store_true") parser.add_argument("-p", "--parallelism", dest="parallelism", type=int, default=multiprocessing.cpu_count() - 2, help="The number of cores to use, defaults to N - 2 cores.") parser.add_argument( "-i", "--minduration", default=8, help="Minimum clip duration", dest="mindur", type=int, ) parser.add_argument( "-m", "--maxduration", default=15, help="Maximum clip duration", dest="maxdur", type=int, ) args = parser.parse_args() try: main(args) except Exception: log.exception("uncaught error!") sys.exit(-2) sys.exit(0)