Compare commits

..

21 Commits

Author SHA1 Message Date
eda6cdbdf0 another build trigger?
Some checks failed
Datadog Software Composition Analysis / Datadog SBOM Generation and Upload (push) Failing after 55s
Datadog Static Analysis / Datadog Static Analyzer (push) Successful in 1m37s
2024-10-24 11:48:05 -04:00
23fa40723a another build trigger? 2024-10-24 11:43:42 -04:00
Tanishq Dubey
b862358902
empty readme to trigger build 2024-10-24 11:40:50 -04:00
Tanishq Dubey
1833420460
give it a try 2024-10-24 11:37:36 -04:00
Tanishq Dubey
131bb6d60f
add some github actions 2024-10-24 11:26:51 -04:00
1de9ba68ac Add docker 2024-10-07 17:24:35 -04:00
58d63c27ae sql gen 2024-10-06 23:54:25 -04:00
6d0134c34d sql gen 2024-10-06 23:51:01 -04:00
f56d9b59c0 sql gen 2024-10-06 23:19:57 -04:00
0c9059bcbc sql gen 2024-10-06 21:50:57 -04:00
434a6ea6fc sql gen 2024-10-06 21:43:49 -04:00
c8e2d46013 sql gen 2024-10-06 21:34:09 -04:00
bbc4bd9115 sql gen 2024-10-06 21:32:16 -04:00
5111ae6a7b reqs 2024-10-06 21:28:25 -04:00
a888e84079 Trash frontend, cleanup, add DB 2024-10-06 21:23:55 -04:00
d90d4fe340 fix empty thoughts as a reply 2024-10-02 19:48:25 -04:00
26514e9fdd switched to qwen model, better prompt, easier parsing 2024-10-02 19:33:14 -04:00
9d25dd7d94 New frontend and tools 2024-10-01 19:31:57 -04:00
b56619a2e6 Next frontend 2024-09-29 12:22:04 -04:00
90e0b4ff7f Add next frontend 2024-09-29 12:22:03 -04:00
47059dabdc whole bucn of nonsense 2024-09-29 12:18:44 -04:00
15 changed files with 1891 additions and 317 deletions

View File

@ -0,0 +1,20 @@
on: [push]
name: Datadog Software Composition Analysis
jobs:
software-composition-analysis:
runs-on: ubuntu-latest
name: Datadog SBOM Generation and Upload
steps:
- name: Checkout
uses: actions/checkout@v3
- name: Check imported libraries are secure and compliant
id: datadog-software-composition-analysis
uses: DataDog/datadog-sca-github-action@main
with:
dd_api_key: ${{ secrets.DD_API_KEY }}
dd_app_key: ${{ secrets.DD_APP_KEY }}
dd_service: jarvis
dd_env: ci
dd_site: us5.datadoghq.com

View File

@ -0,0 +1,21 @@
on: [push]
name: Datadog Static Analysis
jobs:
static-analysis:
runs-on: ubuntu-latest
name: Datadog Static Analyzer
steps:
- name: Checkout
uses: actions/checkout@v3
- name: Check code meets quality and security standards
id: datadog-static-analysis
uses: DataDog/datadog-static-analyzer-github-action@v1
with:
dd_api_key: ${{ secrets.DD_API_KEY }}
dd_app_key: ${{ secrets.DD_APP_KEY }}
dd_service: jarvis
dd_env: ci
dd_site: us5.datadoghq.com
cpu_count: 2

20
.github/workflows/datadog-sca.yml vendored Normal file
View File

@ -0,0 +1,20 @@
on: [push]
name: Datadog Software Composition Analysis
jobs:
software-composition-analysis:
runs-on: ubuntu-latest
name: Datadog SBOM Generation and Upload
steps:
- name: Checkout
uses: actions/checkout@v3
- name: Check imported libraries are secure and compliant
id: datadog-software-composition-analysis
uses: DataDog/datadog-sca-github-action@main
with:
dd_api_key: ${{ secrets.DD_API_KEY }}
dd_app_key: ${{ secrets.DD_APP_KEY }}
dd_service: jarvis
dd_env: ci
dd_site: us5.datadoghq.com

View File

@ -0,0 +1,21 @@
on: [push]
name: Datadog Static Analysis
jobs:
static-analysis:
runs-on: ubuntu-latest
name: Datadog Static Analyzer
steps:
- name: Checkout
uses: actions/checkout@v3
- name: Check code meets quality and security standards
id: datadog-static-analysis
uses: DataDog/datadog-static-analyzer-github-action@v1
with:
dd_api_key: ${{ secrets.DD_API_KEY }}
dd_app_key: ${{ secrets.DD_APP_KEY }}
dd_service: jarvis
dd_env: ci
dd_site: us5.datadoghq.com
cpu_count: 2

43
.gitignore vendored
View File

@ -174,3 +174,46 @@ cython_debug/
pyvenv.cfg pyvenv.cfg
.venv .venv
pip-selfcheck.json pip-selfcheck.json
# Logs
logs
*.log
npm-debug.log*
# Runtime data
pids
*.pid
*.seed
# Directory for instrumented libs generated by jscoverage/JSCover
lib-cov
# Coverage directory used by tools like istanbul
coverage
# nyc test coverage
.nyc_output
# Grunt intermediate storage (http://gruntjs.com/creating-plugins#storing-task-files)
.grunt
# node-waf configuration
.lock-wscript
# Compiled binary addons (http://nodejs.org/api/addons.html)
build/Release
# Dependency directories
node_modules
jspm_packages
# Optional npm cache directory
.npm
# Optional REPL history
.node_repl_history
.next
config.ini
*.db

20
Dockerfile Normal file
View File

@ -0,0 +1,20 @@
# Use an official Python runtime as a parent image
FROM python:3.9-slim
# Set the working directory in the container
WORKDIR /app
# Copy the current directory contents into the container at /app
COPY . /app
# Install any needed packages specified in requirements.txt
RUN pip install --no-cache-dir -r requirements.txt
# Make port 5001 available to the world outside this container
EXPOSE 5001
# Define environment variable
ENV FLASK_APP=main.py
# Run app.py when the container launches
CMD ["python", "main.py"]

5
README.md Normal file
View File

@ -0,0 +1,5 @@
# Jarvis
it's actually not that smart!

138
client.py Normal file
View File

@ -0,0 +1,138 @@
import time
import requests
class LLMChatClient:
def __init__(self, base_url, api_key):
self.base_url = base_url.rstrip("/")
self.api_key = api_key
self.headers = {"X-API-Key": api_key, "Content-Type": "application/json"}
def submit_query(self, message):
"""
Submit a query to the LLM Chat Server.
Args:
message (str): The message to send to the server.
Returns:
str: The query ID for the submitted query.
Raises:
requests.RequestException: If the request fails.
Example:
client = LLMChatClient('http://localhost:5001', 'your-api-key')
query_id = client.submit_query('What is the capital of France?')
print(f"Query ID: {query_id}")
cURL equivalent:
curl -X POST http://localhost:5001/api/v1/query \
-H "Content-Type: application/json" \
-H "X-API-Key: your-api-key" \
-d '{"message": "What is the capital of France?"}'
"""
url = f"{self.base_url}/api/v1/query"
data = {"message": message}
response = requests.post(url, json=data, headers=self.headers)
response.raise_for_status()
return response.json()["query_id"]
def get_query_status(self, query_id):
"""
Get the status of a submitted query.
Args:
query_id (str): The ID of the query to check.
Returns:
dict: A dictionary containing the status and conversation history (if completed).
Raises:
requests.RequestException: If the request fails.
Example:
client = LLMChatClient('http://localhost:5001', 'your-api-key')
status = client.get_query_status('query-id-here')
print(f"Query status: {status['status']}")
if status['status'] == 'completed':
print(f"Conversation history: {status['conversation_history']}")
cURL equivalent:
curl -X GET http://localhost:5001/api/v1/query_status/query-id-here \
-H "X-API-Key: your-api-key"
"""
url = f"{self.base_url}/api/v1/query_status/{query_id}"
response = requests.get(url, headers=self.headers)
response.raise_for_status()
return response.json()
def submit_query_and_wait(self, message, max_wait_time=300, poll_interval=2):
"""
Submit a query and wait for the result.
Args:
message (str): The message to send to the server.
max_wait_time (int): Maximum time to wait for the result in seconds.
poll_interval (int): Time between status checks in seconds.
Returns:
dict: The completed conversation history.
Raises:
requests.RequestException: If the request fails.
TimeoutError: If the query doesn't complete within max_wait_time.
Example:
client = LLMChatClient('http://localhost:5001', 'your-api-key')
result = client.submit_query_and_wait('What is the capital of France?')
print(f"Conversation history: {result}")
"""
query_id = self.submit_query(message)
start_time = time.time()
while time.time() - start_time < max_wait_time:
status = self.get_query_status(query_id)
if status["status"] == "completed":
return status["conversation_history"]
time.sleep(poll_interval)
raise TimeoutError(f"Query did not complete within {max_wait_time} seconds")
class LLMChatAdminClient:
def __init__(self, base_url, admin_key):
self.base_url = base_url.rstrip("/")
self.admin_key = admin_key
self.headers = {"X-Admin-Key": admin_key, "Content-Type": "application/json"}
def generate_api_key(self, username):
"""
Generate a new API key for a user.
Args:
username (str): The username to generate the API key for.
Returns:
dict: A dictionary containing the username and generated API key.
Raises:
requests.RequestException: If the request fails.
Example:
admin_client = LLMChatAdminClient('http://localhost:5001', 'your-admin-key')
result = admin_client.generate_api_key('new_user')
print(f"Generated API key for {result['username']}: {result['api_key']}")
cURL equivalent:
curl -X POST http://localhost:5001/admin/generate_key \
-H "Content-Type: application/json" \
-H "X-Admin-Key: your-admin-key" \
-d '{"username": "new_user"}'
"""
url = f"{self.base_url}/admin/generate_key"
data = {"username": username}
response = requests.post(url, json=data, headers=self.headers)
response.raise_for_status()
return response.json()

16
docker-compose.yml Normal file
View File

@ -0,0 +1,16 @@
version: '3.8'
services:
llm-chat-server:
build: .
ports:
- "5001:5001"
volumes:
- ./llm_chat_server.db:/app/llm_chat_server.db
- ./config.ini:/app/config.ini
environment:
- FLASK_ENV=production
restart: unless-stopped
volumes:
llm_chat_server_db:

View File

@ -9,6 +9,8 @@
<script src="https://cdn.jsdelivr.net/npm/moment@2.29.4/moment.min.js"></script> <script src="https://cdn.jsdelivr.net/npm/moment@2.29.4/moment.min.js"></script>
<script src="https://cdn.jsdelivr.net/npm/chart.js"></script> <script src="https://cdn.jsdelivr.net/npm/chart.js"></script>
<script src="https://cdn.jsdelivr.net/npm/chartjs-adapter-moment@1.0.1/dist/chartjs-adapter-moment.min.js"></script> <script src="https://cdn.jsdelivr.net/npm/chartjs-adapter-moment@1.0.1/dist/chartjs-adapter-moment.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/11.7.0/highlight.min.js"></script>
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/11.7.0/styles/default.min.css">
<link href="https://fonts.googleapis.com/css2?family=Noto+Sans+Mono:wght@400;700&display=swap" rel="stylesheet"> <link href="https://fonts.googleapis.com/css2?family=Noto+Sans+Mono:wght@400;700&display=swap" rel="stylesheet">
<style> <style>
body { body {
@ -86,13 +88,19 @@
color: #888; color: #888;
} }
.thought-summary { .thought-summary {
cursor: pointer;
color: #fff;
margin-bottom: 5px;
font-weight: bold; font-weight: bold;
display: flex; margin-bottom: 5px;
align-items: center; padding: 5px;
border-radius: 3px;
} }
.thought-summary.plan { background-color: #2c3e50; }
.thought-summary.decision { background-color: #34495e; }
.thought-summary.tool_call { background-color: #16a085; }
.thought-summary.tool_result { background-color: #27ae60; }
.thought-summary.think_more { background-color: #2980b9; }
.thought-summary.answer { background-color: #8e44ad; }
.thought-summary.reply { background-color: #f39c12; }
.thought-summary.thoughts { background-color: #f39c12; }
.thought-details { .thought-details {
display: none; display: none;
margin-left: 20px; margin-left: 20px;
@ -238,11 +246,111 @@
transform: translateX(0); transform: translateX(0);
} }
} }
.conversation-history-container {
margin-top: 20px;
background-color: #222;
border-radius: 5px;
padding: 10px;
}
#conversation-history {
color: #fff;
font-family: 'Noto Sans Mono', monospace;
font-size: 12px;
}
.history-card {
background-color: #2c3e50;
border-radius: 5px;
padding: 10px;
margin-bottom: 10px;
}
.history-role {
font-weight: bold;
margin-bottom: 5px;
}
.history-content {
white-space: pre-wrap;
word-break: break-word;
}
.error-message {
background-color: #ff6b6b;
color: #fff;
padding: 10px;
border-radius: 5px;
margin-bottom: 10px;
}
.retrying {
background-color: #feca57;
color: #333;
}
#clear-history-button {
background-color: #e74c3c;
color: white;
border: none;
padding: 10px;
margin-bottom: 10px;
cursor: pointer;
font-family: 'Noto Sans Mono', monospace;
font-size: 14px;
border-radius: 5px;
}
#clear-history-button:hover {
background-color: #c0392b;
}
#chat-tabs {
display: flex;
background-color: #222;
padding: 10px 10px 0 10px;
}
.chat-tab {
background-color: #444;
color: #fff;
border: none;
padding: 10px 20px;
margin-right: 5px;
cursor: pointer;
border-top-left-radius: 5px;
border-top-right-radius: 5px;
}
.chat-tab.active {
background-color: #666;
}
#new-chat-button {
background-color: #27ae60;
color: #fff;
border: none;
padding: 10px 20px;
cursor: pointer;
border-top-left-radius: 5px;
border-top-right-radius: 5px;
}
.close-tab {
margin-left: 10px;
color: #ff6b6b;
cursor: pointer;
}
.thinking-section {
margin-bottom: 20px;
border-left: 2px solid #444;
padding-left: 10px;
}
</style> </style>
</head> </head>
<body> <body>
<div id="main-container"> <div id="main-container">
<div id="chat-area"> <div id="chat-area">
<div id="chat-tabs"></div>
<div id="chat-container"></div> <div id="chat-container"></div>
<div id="input-container" class="pdp-panel"> <div id="input-container" class="pdp-panel">
<div class="pdp-label">INPUT:</div> <div class="pdp-label">INPUT:</div>
@ -272,6 +380,12 @@
<div class="graph-title">GPU Memory</div> <div class="graph-title">GPU Memory</div>
<canvas id="gpuMemoryChart"></canvas> <canvas id="gpuMemoryChart"></canvas>
</div> </div>
<!-- Add this new section for conversation history -->
<div class="conversation-history-container">
<div class="graph-title">Conversation History</div>
<div id="conversation-history"></div>
</div>
</div> </div>
</div> </div>
@ -280,10 +394,80 @@
const chatContainer = document.getElementById('chat-container'); const chatContainer = document.getElementById('chat-container');
const userInput = document.getElementById('user-input'); const userInput = document.getElementById('user-input');
const sendButton = document.getElementById('send-button'); const sendButton = document.getElementById('send-button');
const chatTabs = document.getElementById('chat-tabs');
let thinkingElement = null; let currentChatId = null;
let thinkingDetails = null; let chats = {};
let thinkingStartTime = null;
function createNewChat() {
const chatId = Date.now().toString();
chats[chatId] = {
messages: [],
thinkingSections: []
};
addChatTab(chatId);
switchToChat(chatId);
saveChats();
}
function addChatTab(chatId) {
const tab = document.createElement('button');
tab.classList.add('chat-tab');
tab.textContent = `Chat ${Object.keys(chats).length}`;
tab.onclick = () => switchToChat(chatId);
const closeButton = document.createElement('span');
closeButton.classList.add('close-tab');
closeButton.textContent = '×';
closeButton.onclick = (e) => {
e.stopPropagation();
closeChat(chatId);
};
tab.appendChild(closeButton);
chatTabs.insertBefore(tab, chatTabs.lastElementChild);
}
function switchToChat(chatId) {
currentChatId = chatId;
document.querySelectorAll('.chat-tab').forEach(tab => tab.classList.remove('active'));
document.querySelector(`.chat-tab:nth-child(${Object.keys(chats).indexOf(chatId) + 1})`).classList.add('active');
renderChat(chatId);
}
function closeChat(chatId) {
delete chats[chatId];
saveChats();
const tabToRemove = Array.from(chatTabs.children).find(tab => tab.textContent.includes(`Chat ${Object.keys(chats).indexOf(chatId) + 1}`));
if (tabToRemove) {
chatTabs.removeChild(tabToRemove);
}
if (currentChatId === chatId) {
const remainingChatIds = Object.keys(chats);
if (remainingChatIds.length > 0) {
switchToChat(remainingChatIds[0]);
} else {
createNewChat();
}
}
}
function renderChat(chatId) {
chatContainer.innerHTML = '';
const chat = chats[chatId];
chat.messages.forEach(message => addMessage(message.content, message.isUser));
chat.thinkingSections.forEach(section => {
const thinkingSection = createThinkingSection();
section.thoughts.forEach(thought => addThought(thought.type, thought.content, thought.details, thinkingSection));
});
}
function createThinkingSection() {
const section = document.createElement('div');
section.classList.add('thinking-section');
chatContainer.appendChild(section);
return section;
}
function addMessage(message, isUser) { function addMessage(message, isUser) {
const messageElement = document.createElement('div'); const messageElement = document.createElement('div');
@ -292,65 +476,40 @@
messageElement.innerHTML = isUser ? message : marked.parse(message); messageElement.innerHTML = isUser ? message : marked.parse(message);
chatContainer.appendChild(messageElement); chatContainer.appendChild(messageElement);
chatContainer.scrollTop = chatContainer.scrollHeight; chatContainer.scrollTop = chatContainer.scrollHeight;
if (currentChatId) {
chats[currentChatId].messages.push({ content: message, isUser: isUser });
saveChats();
}
} }
function startThinking() { function addThought(type, content, details = '', thinkingSection) {
thinkingElement = document.createElement('div'); const stepElement = document.createElement('div');
thinkingElement.classList.add('thought-summary', 'collapsible'); stepElement.classList.add('thought-summary', 'collapsible', type);
stepElement.textContent = type.charAt(0).toUpperCase() + type.slice(1).replace('_', ' ') + ':';
stepElement.onclick = toggleStepDetails;
const stepDetails = document.createElement('div');
stepDetails.classList.add('thought-details');
const led = document.createElement('div'); if (type === 'error') {
led.classList.add('led', 'blinking'); stepElement.classList.add('error-message');
if (content.includes('retrying')) {
const textNode = document.createTextNode('Thinking...'); stepElement.classList.add('retrying');
}
thinkingElement.appendChild(led); stepDetails.innerHTML = marked.parse(content + '\n\nDetails:\n```\n' + details + '\n```');
thinkingElement.appendChild(textNode); } else {
thinkingElement.onclick = toggleThinkingDetails; stepDetails.innerHTML = marked.parse(content);
}
thinkingDetails = document.createElement('div');
thinkingDetails.classList.add('thought-details'); thinkingSection.appendChild(stepElement);
thinkingSection.appendChild(stepDetails);
chatContainer.appendChild(thinkingElement);
chatContainer.appendChild(thinkingDetails);
thinkingStartTime = Date.now();
chatContainer.scrollTop = chatContainer.scrollHeight; chatContainer.scrollTop = chatContainer.scrollHeight;
}
function addThought(step, content) { if (currentChatId) {
if (thinkingDetails) { const currentThinkingSection = chats[currentChatId].thinkingSections[chats[currentChatId].thinkingSections.length - 1];
const stepElement = document.createElement('div'); currentThinkingSection.thoughts.push({ type, content, details });
stepElement.classList.add('thought-summary', 'collapsible'); saveChats();
stepElement.textContent = step;
stepElement.onclick = toggleStepDetails;
const stepDetails = document.createElement('div');
stepDetails.classList.add('thought-details');
stepDetails.innerHTML = content;
thinkingDetails.appendChild(stepElement);
thinkingDetails.appendChild(stepDetails);
chatContainer.scrollTop = chatContainer.scrollHeight;
}
}
function endThinking(thinkingTime) {
if (thinkingElement) {
const textNode = thinkingElement.childNodes[1];
textNode.nodeValue = `Thinking... (${thinkingTime}s)`;
const led = thinkingElement.querySelector('.led');
led.classList.remove('blinking');
led.style.backgroundColor = '#0f0';
led.style.boxShadow = '0 0 10px #0f0';
thinkingStartTime = null;
}
}
function toggleThinkingDetails() {
this.classList.toggle('open');
const details = this.nextElementSibling;
if (details) {
details.style.display = details.style.display === 'none' ? 'block' : 'none';
} }
} }
@ -362,34 +521,71 @@
} }
} }
socket.on('thinking', (data) => { function saveChats() {
if (!thinkingElement) startThinking(); localStorage.setItem('chats', JSON.stringify(chats));
addThought(data.step, 'Started'); }
});
socket.on('thought', (data) => { function loadChats() {
addThought('Result', data.content); const storedChats = localStorage.getItem('chats');
}); if (storedChats) {
chats = JSON.parse(storedChats);
socket.on('chat_response', (data) => { Object.keys(chats).forEach(chatId => addChatTab(chatId));
endThinking(data.thinking_time); if (Object.keys(chats).length > 0) {
addMessage(data.response, false); switchToChat(Object.keys(chats)[0]);
}); } else {
createNewChat();
socket.on('error', (data) => { }
endThinking(data.thinking_time); } else {
addMessage(`Error: ${data.message}`, false); createNewChat();
}); }
}
function sendMessage() { function sendMessage() {
const message = userInput.value.trim(); const message = userInput.value.trim();
if (message) { if (message && currentChatId) {
addMessage(message, true); addMessage(message, true);
socket.emit('chat_request', { message: message }); chats[currentChatId].thinkingSections.push({ thoughts: [] });
socket.emit('chat_request', {
message: message,
conversation_history: chats[currentChatId].messages.filter(m => !m.isUser).map(m => ({ role: 'assistant', content: m.content }))
.concat(chats[currentChatId].messages.filter(m => m.isUser).map(m => ({ role: 'user', content: m.content })))
});
userInput.value = ''; userInput.value = '';
} }
} }
socket.on('thinking', (data) => {
if (currentChatId) {
const newThinkingSection = createThinkingSection();
chats[currentChatId].thinkingSections.push({ thoughts: [] });
addThought(data.step, 'Started', '', newThinkingSection);
}
});
socket.on('thought', (data) => {
if (currentChatId) {
const currentThinkingSection = chatContainer.querySelector('.thinking-section:last-child');
addThought(data.type, data.content, data.details, currentThinkingSection);
}
});
socket.on('chat_response', (data) => {
if (currentChatId) {
addMessage(data.response, false);
}
});
socket.on('error', (data) => {
if (currentChatId) {
const currentThinkingSection = chatContainer.querySelector('.thinking-section:last-child');
if (data.type === 'retrying') {
addThought('error', data.content, '', currentThinkingSection);
} else {
addThought('error', data.message, '', currentThinkingSection);
}
}
});
sendButton.addEventListener('click', sendMessage); sendButton.addEventListener('click', sendMessage);
userInput.addEventListener('keypress', function(e) { userInput.addEventListener('keypress', function(e) {
if (e.key === 'Enter' && !e.shiftKey) { if (e.key === 'Enter' && !e.shiftKey) {
@ -398,6 +594,16 @@
} }
}); });
// Add new chat button
const newChatButton = document.createElement('button');
newChatButton.id = 'new-chat-button';
newChatButton.textContent = '+ New Chat';
newChatButton.onclick = createNewChat;
chatTabs.appendChild(newChatButton);
// Load chats when the page loads
loadChats();
const chartOptions = { const chartOptions = {
type: 'line', type: 'line',
options: { options: {
@ -570,6 +776,41 @@
window.addEventListener('resize', checkWindowSize); window.addEventListener('resize', checkWindowSize);
checkWindowSize(); // Initial check checkWindowSize(); // Initial check
// Add this new function to update the conversation history
function updateConversationHistory(history) {
const conversationHistoryElement = document.getElementById('conversation-history');
conversationHistoryElement.innerHTML = '';
history.forEach(item => {
const card = document.createElement('div');
card.classList.add('history-card');
const role = document.createElement('div');
role.classList.add('history-role');
role.textContent = item.role.charAt(0).toUpperCase() + item.role.slice(1);
const content = document.createElement('pre');
content.classList.add('history-content');
content.innerHTML = hljs.highlightAuto(item.content).value;
card.appendChild(role);
card.appendChild(content);
conversationHistoryElement.appendChild(card);
});
}
// Add this new socket listener
socket.on('conversation_history', (data) => {
updateConversationHistory(data.history);
});
// Add event listener for the clear history button
clearHistoryButton.addEventListener('click', () => {
if (confirm('Are you sure you want to clear the conversation history?')) {
clearConversationHistory();
}
});
</script> </script>
</body> </body>
</html> </html>

991
main.py

File diff suppressed because it is too large Load Diff

View File

@ -3,30 +3,86 @@ import structlog
logger = structlog.get_logger() logger = structlog.get_logger()
class ModelManager: class ModelManager:
def __init__(self): def __init__(self):
self.model_capabilities = { self.model_capabilities = {
"qwen2.5:7b": ["general_knowledge", "structured_output", "multilingual", "instruction_following", "structured_data"], "ajindal/llama3.1-storm:8b": [
"llama3.1:8b": ["general_knowledge", "reasoning", "tool_calling", "conversation", "multilingual", "instruction_following"], "general_knowledge",
"qwen2.5-coder:7b": ["code_generation", "code_analysis", "instruction_following", "math_reasoning"], "reasoning",
"llama3.2:3b": ["summarization", "instruction_following", "tool_calling", "multilingual"], "tool_calling",
"llava:7b": ["visual_reasoning", "visual_conversation", "visual_tool_calling", "vision", "ocr", "multimodal"], "conversation",
"multilingual",
"instruction_following",
],
"llama3.1:8b": [
"general_knowledge",
"reasoning",
"tool_calling",
"conversation",
"multilingual",
"instruction_following",
],
"qwen2.5:7b": [
"general_knowledge",
"reasoning",
"tool_calling",
"conversation",
"multilingual",
"instruction_following",
],
"llama3.2:3b": [
"summarization",
"instruction_following",
"tool_calling",
"multilingual",
],
"llava:7b": [
"visual_reasoning",
"visual_conversation",
"visual_tool_calling",
"vision",
"ocr",
"multimodal",
],
} }
logger.info("ModelManager initialized", model_capabilities=self.model_capabilities) logger.info(
"ModelManager initialized", model_capabilities=self.model_capabilities
)
def get_model_capabilities(self, model_name): def get_model_capabilities(self, model_name):
capabilities = self.model_capabilities.get(model_name, []) capabilities = self.model_capabilities.get(model_name, [])
logger.debug("Retrieved model capabilities", model=model_name, capabilities=capabilities) logger.debug(
"Retrieved model capabilities", model=model_name, capabilities=capabilities
)
return capabilities return capabilities
def select_best_model(self, required_capability): def select_best_model(self, required_capability):
suitable_models = [model for model, capabilities in self.model_capabilities.items() if required_capability in capabilities] suitable_models = [
selected_model = suitable_models[0] if suitable_models else list(self.model_capabilities.keys())[0] model
logger.info("Selected best model", required_capability=required_capability, selected_model=selected_model) for model, capabilities in self.model_capabilities.items()
if required_capability in capabilities
]
selected_model = (
suitable_models[0]
if suitable_models
else list(self.model_capabilities.keys())[0]
)
logger.info(
"Selected best model",
required_capability=required_capability,
selected_model=selected_model,
)
return selected_model return selected_model
def generate_text(self, model_name, prompt, max_length=100, system="You are a helpful assistant."): def generate_text(
logger.debug("Generating text", model=model_name, prompt=prompt, max_length=max_length) self,
model_name,
prompt,
max_length=100,
system="You are a helpful assistant.",
tools=[],
):
# Check if model exists # Check if model exists
try: try:
ollama.pull(model_name) ollama.pull(model_name)
@ -38,8 +94,16 @@ class ModelManager:
else: else:
logger.exception("Error pulling model", model=model_name, error=str(e)) logger.exception("Error pulling model", model=model_name, error=str(e))
raise e raise e
response = ollama.generate(model=model_name, prompt=prompt, system=system)
logger.debug("Text generated", model=model_name, response=response['response'])
return response['response']
model_manager = ModelManager() response = ollama.generate(
model=model_name,
prompt=prompt,
system=system,
tools=tools,
max_tokens=max_length,
)
logger.debug("Text generated", model=model_name, response=response["response"])
return response["response"]
model_manager = ModelManager()

View File

@ -4,11 +4,19 @@ aiohttp==3.10.5
aiosignal==1.3.1 aiosignal==1.3.1
annotated-types==0.7.0 annotated-types==0.7.0
anyio==4.6.0 anyio==4.6.0
art==6.3
attrs==24.2.0 attrs==24.2.0
beautifulsoup4==4.12.3
bidict==0.23.1
black==24.8.0
blinker==1.8.2
bs4==0.0.2
certifi==2024.7.4 certifi==2024.7.4
chardet==5.2.0
charset-normalizer==3.3.2 charset-normalizer==3.3.2
click==8.1.7 click==8.1.7
cloudpickle==3.0.0 cloudpickle==3.0.0
cssselect==1.2.0
datasets==3.0.0 datasets==3.0.0
dill==0.3.8 dill==0.3.8
diskcache==5.6.3 diskcache==5.6.3
@ -17,9 +25,13 @@ duckduckgo_search==6.2.6
einops==0.8.0 einops==0.8.0
fastapi==0.115.0 fastapi==0.115.0
filelock==3.15.4 filelock==3.15.4
Flask==3.0.3
flask-openapi3==3.1.3
Flask-SocketIO==5.3.7
frozenlist==1.4.1 frozenlist==1.4.1
fsspec==2024.6.1 fsspec==2024.6.1
gguf==0.9.1 gguf==0.9.1
GPUtil==1.4.0
h11==0.14.0 h11==0.14.0
httpcore==1.0.5 httpcore==1.0.5
httptools==0.6.1 httptools==0.6.1
@ -29,6 +41,8 @@ idna==3.7
importlib_metadata==8.5.0 importlib_metadata==8.5.0
inquirerpy==0.3.4 inquirerpy==0.3.4
interegular==0.3.3 interegular==0.3.3
isort==5.13.2
itsdangerous==2.2.0
Jinja2==3.1.4 Jinja2==3.1.4
jiter==0.5.0 jiter==0.5.0
jsonschema==4.23.0 jsonschema==4.23.0
@ -36,6 +50,9 @@ jsonschema-specifications==2023.12.1
lark==1.2.2 lark==1.2.2
llvmlite==0.43.0 llvmlite==0.43.0
lm-format-enforcer==0.10.6 lm-format-enforcer==0.10.6
lxml==5.3.0
lxml_html_clean==0.2.2
markdownify==0.13.1
MarkupSafe==2.1.5 MarkupSafe==2.1.5
mistral_common==1.4.3 mistral_common==1.4.3
mpmath==1.3.0 mpmath==1.3.0
@ -43,6 +60,7 @@ msgpack==1.1.0
msgspec==0.18.6 msgspec==0.18.6
multidict==6.1.0 multidict==6.1.0
multiprocess==0.70.16 multiprocess==0.70.16
mypy-extensions==1.0.0
nest-asyncio==1.6.0 nest-asyncio==1.6.0
networkx==3.3 networkx==3.3
numba==0.60.0 numba==0.60.0
@ -60,13 +78,16 @@ nvidia-ml-py==12.560.30
nvidia-nccl-cu12==2.20.5 nvidia-nccl-cu12==2.20.5
nvidia-nvjitlink-cu12==12.6.20 nvidia-nvjitlink-cu12==12.6.20
nvidia-nvtx-cu12==12.1.105 nvidia-nvtx-cu12==12.1.105
ollama==0.3.3
openai==1.47.1 openai==1.47.1
outlines==0.0.46 outlines==0.0.46
packaging==24.1 packaging==24.1
pandas==2.2.3 pandas==2.2.3
partial-json-parser==0.2.1.1.post4 partial-json-parser==0.2.1.1.post4
pathspec==0.12.1
pfzy==0.3.4 pfzy==0.3.4
pillow==10.4.0 pillow==10.4.0
platformdirs==4.3.6
primp==0.5.5 primp==0.5.5
prometheus-fastapi-instrumentator==7.0.0 prometheus-fastapi-instrumentator==7.0.0
prometheus_client==0.21.0 prometheus_client==0.21.0
@ -81,10 +102,13 @@ pydantic==2.9.2
pydantic_core==2.23.4 pydantic_core==2.23.4
python-dateutil==2.9.0.post0 python-dateutil==2.9.0.post0
python-dotenv==1.0.1 python-dotenv==1.0.1
python-engineio==4.9.1
python-socketio==5.11.4
pytz==2024.2 pytz==2024.2
PyYAML==6.0.2 PyYAML==6.0.2
pyzmq==26.2.0 pyzmq==26.2.0
ray==2.36.1 ray==2.36.1
readability-lxml==0.8.1
referencing==0.35.1 referencing==0.35.1
regex==2024.7.24 regex==2024.7.24
requests==2.32.3 requests==2.32.3
@ -92,9 +116,12 @@ rpds-py==0.20.0
safetensors==0.4.4 safetensors==0.4.4
sentencepiece==0.2.0 sentencepiece==0.2.0
setuptools==72.1.0 setuptools==72.1.0
simple-websocket==1.0.0
six==1.16.0 six==1.16.0
sniffio==1.3.1 sniffio==1.3.1
soupsieve==2.6
starlette==0.38.6 starlette==0.38.6
structlog==24.4.0
sympy==1.13.2 sympy==1.13.2
tiktoken==0.7.0 tiktoken==0.7.0
tokenizers==0.19.1 tokenizers==0.19.1
@ -113,6 +140,8 @@ vllm-flash-attn==2.6.1
watchfiles==0.24.0 watchfiles==0.24.0
wcwidth==0.2.13 wcwidth==0.2.13
websockets==13.1 websockets==13.1
Werkzeug==3.0.4
wsproto==1.2.0
xformers==0.0.27.post2 xformers==0.0.27.post2
xxhash==3.5.0 xxhash==3.5.0
yarl==1.12.0 yarl==1.12.0

16
schema.sql Normal file
View File

@ -0,0 +1,16 @@
CREATE TABLE IF NOT EXISTS Keys (
id INTEGER PRIMARY KEY AUTOINCREMENT,
username TEXT NOT NULL UNIQUE,
api_key TEXT NOT NULL UNIQUE
);
CREATE TABLE IF NOT EXISTS Queries (
id TEXT PRIMARY KEY,
ip TEXT NOT NULL,
timestamp DATETIME DEFAULT CURRENT_TIMESTAMP,
query TEXT NOT NULL,
api_key_id INTEGER,
status TEXT NOT NULL,
conversation_history TEXT,
FOREIGN KEY (api_key_id) REFERENCES Keys (id)
);

369
tools.py Normal file
View File

@ -0,0 +1,369 @@
import subprocess
import tempfile
import time
import json
import requests
from markdownify import markdownify as md
from readability.readability import Document
import duckduckgo_search
import datetime
import random
import math
import re
import base64
from io import BytesIO
from PIL import Image, ImageDraw, ImageFont
import ollama
import os
class Tool:
def __init__(self, name: str, description: str, arguments: dict, returns: str):
self.name = name
self.description = description
self.arguments = arguments
self.returns = returns
def execute(self, arguments: dict) -> str:
pass
class ToolManager:
def __init__(self):
self.tools = []
def add_tool(self, tool: Tool):
self.tools.append(tool)
def get_tool(self, name: str) -> Tool:
for tool in self.tools:
if tool.name == name:
return tool
return None
def get_tools_and_descriptions_for_prompt(self):
return "\n".join([f"{tool.name}: {tool.description}" for tool in self.tools])
def get_tools_for_ollama_dict(self):
return [
{
"type": "function",
"function": {
"name": tool.name,
"description": tool.description,
"parameters": tool.arguments,
},
}
for tool in self.tools
]
class DefaultToolManager(ToolManager):
def __init__(self):
super().__init__()
self.add_tool(SearchTool())
self.add_tool(GetReadablePageContentsTool())
self.add_tool(CalculatorTool())
self.add_tool(PythonCodeTool())
self.add_tool(DateTimeTool())
self.add_tool(RandomNumberTool())
self.add_tool(RegexTool())
self.add_tool(Base64Tool())
self.add_tool(SimpleChartTool())
self.add_tool(LLAVAImageAnalysisTool())
class SearchTool(Tool):
def __init__(self):
super().__init__(
"search_web",
"Search the internet for information",
{
"type": "object",
"properties": {
"query": {"type": "string", "description": "The search query"}
},
},
"results:list[string]",
)
def execute(self, arg: dict) -> str:
try:
res = duckduckgo_search.DDGS().text(arg["query"], max_results=5)
return "\n\n".join([f"{r['title']}\n{r['body']}\n{r['href']}" for r in res])
except Exception as e:
return f"Error searching the web: {str(e)}"
def get_readable_page_contents(url: str) -> str:
try:
response = requests.get(url)
response.raise_for_status()
doc = Document(response.content)
content = doc.summary()
return md(content)
except Exception as e:
return f"Error fetching readable content: {str(e)}"
class GetReadablePageContentsTool(Tool):
def __init__(self):
super().__init__(
"get_readable_page_contents",
"Get the contents of a web page in a readable format",
{
"type": "object",
"properties": {
"url": {"type": "string", "description": "The url of the web page"}
},
},
"contents:string",
)
def execute(self, arg: dict) -> str:
return get_readable_page_contents(arg["url"])
class CalculatorTool(Tool):
def __init__(self):
super().__init__(
"calculator",
"Perform a calculation using python's eval function",
{
"type": "object",
"properties": {
"expression": {
"type": "string",
"description": "The mathematical expression to evaluate, should be a python mathematical expression",
}
},
},
"result:string",
)
def execute(self, arg: dict) -> str:
try:
return str(eval(arg["expression"]))
except Exception as e:
return f"Error executing code: {str(e)}"
class PythonCodeTool(Tool):
def __init__(self):
super().__init__(
"python_code",
"Execute python code using a temporary file and a subprocess. You must print results to stdout.",
{
"type": "object",
"properties": {
"code": {
"type": "string",
"description": "The python code to execute, can be multiline",
}
},
},
"result:string",
)
def execute(self, arg: dict) -> str:
try:
with tempfile.NamedTemporaryFile(
suffix=".py", mode="w", delete=False
) as temp_file:
temp_file.write(arg["code"])
temp_file.flush()
start_time = time.time()
process = subprocess.Popen(
["python", temp_file.name],
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
text=True,
)
stdout, stderr = process.communicate(timeout=10) # 10 second timeout
end_time = time.time()
execution_time = end_time - start_time
result = {
"stdout": stdout,
"stderr": stderr,
"return_value": process.returncode,
"execution_time": execution_time,
}
except subprocess.TimeoutExpired:
process.kill()
return "Error: Code execution timed out after 10 seconds"
except Exception as e:
return f"Error executing code: {str(e)}"
return "\n".join([f"{k}:\n{v}" for k, v in result.items()])
class DateTimeTool(Tool):
def __init__(self):
super().__init__(
"get_current_datetime",
"Get the current date and time",
{"type": "object", "properties": {}},
"datetime:string"
)
def execute(self, arg: dict) -> str:
return datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
class RandomNumberTool(Tool):
def __init__(self):
super().__init__(
"generate_random_number",
"Generate a random number within a given range",
{
"type": "object",
"properties": {
"min": {"type": "number", "description": "The minimum value"},
"max": {"type": "number", "description": "The maximum value"}
}
},
"random_number:number"
)
def execute(self, arg: dict) -> str:
return str(random.uniform(arg["min"], arg["max"]))
class RegexTool(Tool):
def __init__(self):
super().__init__(
"regex_match",
"Perform a regex match on a given text",
{
"type": "object",
"properties": {
"text": {"type": "string", "description": "The text to search in"},
"pattern": {"type": "string", "description": "The regex pattern to match"}
}
},
"matches:list[string]"
)
def execute(self, arg: dict) -> str:
matches = re.findall(arg["pattern"], arg["text"])
return json.dumps(matches)
class Base64Tool(Tool):
def __init__(self):
super().__init__(
"base64_encode_decode",
"Encode or decode a string using Base64",
{
"type": "object",
"properties": {
"action": {"type": "string", "enum": ["encode", "decode"], "description": "Whether to encode or decode"},
"text": {"type": "string", "description": "The text to encode or decode"}
}
},
"result:string"
)
def execute(self, arg: dict) -> str:
if arg["action"] == "encode":
return base64.b64encode(arg["text"].encode()).decode()
elif arg["action"] == "decode":
return base64.b64decode(arg["text"].encode()).decode()
else:
return "Invalid action. Use 'encode' or 'decode'."
class SimpleChartTool(Tool):
def __init__(self):
super().__init__(
"generate_simple_chart",
"Generate a simple bar chart image",
{
"type": "object",
"properties": {
"data": {"type": "array", "items": {"type": "number"}, "description": "List of numerical values for the chart"},
"labels": {"type": "array", "items": {"type": "string"}, "description": "Labels for each bar"}
}
},
"image_base64:string"
)
def execute(self, arg: dict) -> str:
data = arg["data"]
labels = arg["labels"]
# Create a simple bar chart
width, height = 400, 300
img = Image.new('RGB', (width, height), color='white')
draw = ImageDraw.Draw(img)
# Draw bars
max_value = max(data)
bar_width = width // (len(data) + 1)
for i, value in enumerate(data):
bar_height = (value / max_value) * (height - 50)
left = (i + 1) * bar_width
draw.rectangle([left, height - bar_height, left + bar_width, height], fill='blue')
# Add labels
font = ImageFont.load_default()
for i, label in enumerate(labels):
left = (i + 1) * bar_width + bar_width // 2
draw.text((left, height - 20), label, fill='black', anchor='ms', font=font)
# Convert to base64
buffered = BytesIO()
img.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode()
return img_str
class LLAVAImageAnalysisTool(Tool):
def __init__(self):
super().__init__(
"analyze_image",
"Analyze an image using the LLAVA model",
{
"type": "object",
"properties": {
"image_base64": {"type": "string", "description": "Base64 encoded image"},
"question": {"type": "string", "description": "Question about the image"}
}
},
"analysis:string"
)
def execute(self, arg: dict) -> str:
try:
# Decode base64 image
image_data = base64.b64decode(arg["image_base64"])
image = Image.open(BytesIO(image_data))
# Save image to a temporary file
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as temp_file:
image.save(temp_file, format="PNG")
temp_file_path = temp_file.name
# Call LLAVA model
response = ollama.chat(
model="llava:7b",
messages=[
{
"role": "user",
"content": arg["question"],
"images": [temp_file_path]
}
]
)
# Clean up temporary file
os.remove(temp_file_path)
# Unload LLAVA model
ollama.delete("llava:7b")
return response['message']['content']
except Exception as e:
return f"Error analyzing image: {str(e)}"