838 lines
29 KiB
Python
838 lines
29 KiB
Python
import configparser
|
|
import json
|
|
import os
|
|
import pprint
|
|
import queue
|
|
import random
|
|
import re
|
|
import secrets
|
|
import sqlite3
|
|
import threading
|
|
import time
|
|
import uuid
|
|
from datetime import datetime
|
|
from typing import List, Optional
|
|
import enum
|
|
|
|
import GPUtil
|
|
import ollama
|
|
import psutil
|
|
import structlog
|
|
import logging
|
|
from flask import Flask, g, jsonify, request, send_from_directory
|
|
from flask_socketio import SocketIO, emit
|
|
from pydantic import BaseModel
|
|
from werkzeug.utils import secure_filename
|
|
import base64
|
|
|
|
from models import model_manager
|
|
from tools import DefaultToolManager
|
|
|
|
# Configure logging
|
|
logging.basicConfig(level=logging.INFO, format="%(message)s")
|
|
console_handler = logging.StreamHandler()
|
|
console_handler.setLevel(logging.INFO)
|
|
logger = structlog.get_logger()
|
|
# Configuration setup
|
|
CONFIG_FILE = "config.ini"
|
|
|
|
# Add this near the top of the file, after imports
|
|
processing_thread = None
|
|
processing_thread_started = False
|
|
|
|
ALLOWED_EXTENSIONS = {'png', 'jpg', 'jpeg', 'gif'}
|
|
MAX_IMAGE_SIZE = 1 * 1024 * 1024 # 1MB
|
|
|
|
|
|
def create_default_config():
|
|
config = configparser.ConfigParser()
|
|
config["DEFAULT"] = {
|
|
"AdminKey": secrets.token_urlsafe(32),
|
|
"DatabasePath": "llm_chat_server.db",
|
|
}
|
|
config["SERVER_FEATURES"] = {
|
|
"EnableFrontend": "false",
|
|
"EnableChatEndpoints": "false",
|
|
"EnableAPIEndpoints": "true",
|
|
}
|
|
config["MODEL"] = {"PrimaryModel": "qwen2.5:14b"}
|
|
config["PERFORMANCE"] = {"UpdateInterval": "0.1"}
|
|
with open(CONFIG_FILE, "w") as configfile:
|
|
config.write(configfile)
|
|
|
|
|
|
def load_config():
|
|
if not os.path.exists(CONFIG_FILE):
|
|
create_default_config()
|
|
|
|
config = configparser.ConfigParser()
|
|
config.read(CONFIG_FILE)
|
|
return config
|
|
|
|
|
|
config = load_config()
|
|
ADMIN_KEY = config["DEFAULT"]["AdminKey"]
|
|
DATABASE = config["DEFAULT"]["DatabasePath"]
|
|
ENABLE_FRONTEND = config["SERVER_FEATURES"].getboolean("EnableFrontend")
|
|
ENABLE_CHAT_ENDPOINTS = config["SERVER_FEATURES"].getboolean("EnableChatEndpoints")
|
|
ENABLE_API_ENDPOINTS = config["SERVER_FEATURES"].getboolean("EnableAPIEndpoints")
|
|
PRIMARY_MODEL = config["MODEL"]["PrimaryModel"]
|
|
UPDATE_INTERVAL = config["PERFORMANCE"].getfloat("UpdateInterval")
|
|
|
|
app = Flask(__name__)
|
|
socketio = SocketIO(app, cors_allowed_origins="*")
|
|
|
|
tool_manager = DefaultToolManager()
|
|
|
|
|
|
# Database setup
|
|
def get_db():
|
|
db = getattr(g, "_database", None)
|
|
if db is None:
|
|
db = g._database = sqlite3.connect(DATABASE)
|
|
db.row_factory = sqlite3.Row
|
|
return db
|
|
|
|
|
|
@app.teardown_appcontext
|
|
def close_connection(exception):
|
|
db = getattr(g, "_database", None)
|
|
if db is not None:
|
|
db.close()
|
|
|
|
|
|
class QueryStatus(enum.Enum):
|
|
QUEUED = "queued"
|
|
PROCESSING = "processing"
|
|
DONE = "done"
|
|
|
|
|
|
def init_db():
|
|
with app.app_context():
|
|
db = get_db()
|
|
db.execute("""
|
|
CREATE TABLE IF NOT EXISTS Keys (
|
|
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
|
username TEXT NOT NULL UNIQUE,
|
|
api_key TEXT NOT NULL UNIQUE
|
|
);
|
|
""")
|
|
db.execute('''
|
|
CREATE TABLE IF NOT EXISTS Queries (
|
|
id TEXT PRIMARY KEY,
|
|
ip TEXT NOT NULL,
|
|
timestamp DATETIME DEFAULT CURRENT_TIMESTAMP,
|
|
query TEXT NOT NULL,
|
|
api_key_id INTEGER,
|
|
status TEXT NOT NULL,
|
|
conversation_history TEXT,
|
|
FOREIGN KEY (api_key_id) REFERENCES Keys (id)
|
|
)
|
|
''')
|
|
db.commit()
|
|
|
|
|
|
# Create a schema.sql file with the following content:
|
|
"""
|
|
CREATE TABLE IF NOT EXISTS Keys (
|
|
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
|
username TEXT NOT NULL UNIQUE,
|
|
api_key TEXT NOT NULL UNIQUE
|
|
);
|
|
|
|
CREATE TABLE IF NOT EXISTS Queries (
|
|
id TEXT PRIMARY KEY,
|
|
ip TEXT NOT NULL,
|
|
timestamp DATETIME DEFAULT CURRENT_TIMESTAMP,
|
|
query TEXT NOT NULL,
|
|
api_key_id INTEGER,
|
|
status TEXT NOT NULL,
|
|
conversation_history TEXT,
|
|
FOREIGN KEY (api_key_id) REFERENCES Keys (id)
|
|
);
|
|
"""
|
|
|
|
|
|
def validate_api_key(api_key):
|
|
db = get_db()
|
|
cursor = db.cursor()
|
|
cursor.execute("SELECT id FROM Keys WHERE api_key = ?", (api_key,))
|
|
result = cursor.fetchone()
|
|
return result[0] if result else None
|
|
|
|
|
|
@app.route("/")
|
|
def index():
|
|
if ENABLE_FRONTEND:
|
|
logger.info("Serving index.html")
|
|
return send_from_directory(".", "index.html")
|
|
else:
|
|
return jsonify({"error": "Frontend is disabled"}), 404
|
|
|
|
|
|
class ChatRequest(BaseModel):
|
|
message: str
|
|
|
|
|
|
class ChatResponse(BaseModel):
|
|
response: str
|
|
|
|
|
|
@socketio.on("chat_request")
|
|
def handle_chat_request(data):
|
|
if not ENABLE_CHAT_ENDPOINTS:
|
|
emit("error", {"message": "Chat endpoints are disabled"})
|
|
return
|
|
|
|
user_input = data["message"]
|
|
conversation_history = data.get("conversation_history", [])
|
|
conversation_history = [
|
|
{"role": "system", "content": ANSWER_QUESTION_PROMPT}
|
|
] + conversation_history
|
|
logger.info(
|
|
"Received chat request",
|
|
user_input=user_input,
|
|
conversation_history=conversation_history,
|
|
)
|
|
|
|
start_time = time.time()
|
|
try:
|
|
final_response = answer_question_tools(user_input, conversation_history)
|
|
end_time = time.time()
|
|
thinking_time = round(end_time - start_time, 2)
|
|
|
|
emit(
|
|
"chat_response",
|
|
{"response": final_response, "thinking_time": thinking_time},
|
|
)
|
|
except Exception as e:
|
|
logger.exception("Error during chat processing", error=str(e))
|
|
end_time = time.time()
|
|
thinking_time = round(end_time - start_time, 2)
|
|
emit(
|
|
"error",
|
|
{"message": f"An error occurred: {str(e)}", "thinking_time": thinking_time},
|
|
)
|
|
|
|
|
|
def answer_question_tools(
|
|
user_input: str, conversation_history: List[dict], max_retries: int = 100
|
|
):
|
|
global tool_manager
|
|
|
|
# If conversation_history is empty, initialize it with the system prompt
|
|
if not conversation_history:
|
|
conversation_history = [
|
|
{"role": "system", "content": ANSWER_QUESTION_PROMPT},
|
|
]
|
|
|
|
logger.info(
|
|
"Starting chat",
|
|
user_input=user_input,
|
|
conversation_history=conversation_history,
|
|
)
|
|
# Add the new user input to the conversation history
|
|
conversation_history.append({"role": "user", "content": user_input})
|
|
|
|
emit("thinking", {"step": "Starting"})
|
|
emit("conversation_history", {"history": conversation_history})
|
|
|
|
last_thought_content = None
|
|
|
|
for _ in range(max_retries):
|
|
response = ollama.chat(
|
|
model=PRIMARY_MODEL,
|
|
messages=conversation_history,
|
|
tools=tool_manager.get_tools_for_ollama_dict(),
|
|
stream=False,
|
|
)
|
|
assistant_message = response["message"]
|
|
|
|
conversation_history.append(assistant_message)
|
|
emit("conversation_history", {"history": conversation_history})
|
|
pprint.pp(assistant_message)
|
|
|
|
if "tool_calls" in assistant_message:
|
|
for tool_call in assistant_message["tool_calls"]:
|
|
tool_name = tool_call["function"]["name"]
|
|
tool_args = tool_call["function"]["arguments"]
|
|
emit(
|
|
"thought",
|
|
{
|
|
"type": "tool_call",
|
|
"content": f"Tool: {tool_name}\nArguments: {tool_args}",
|
|
},
|
|
)
|
|
tool_response = tool_manager.get_tool(tool_name).execute(tool_args)
|
|
conversation_history.append({"role": "tool", "content": tool_response})
|
|
emit("conversation_history", {"history": conversation_history})
|
|
emit("thought", {"type": "tool_result", "content": tool_response})
|
|
else:
|
|
if "<reply>" in assistant_message["content"].lower():
|
|
reply_content = re.search(
|
|
r"<reply>(.*?)</reply>", assistant_message["content"], re.DOTALL
|
|
)
|
|
if reply_content:
|
|
reply_answer = reply_content.group(1).strip()
|
|
emit("thought", {"type": "answer", "content": reply_answer})
|
|
return reply_answer
|
|
else:
|
|
current_thought_content = assistant_message["content"].strip()
|
|
emit(
|
|
"thought", {"type": "thoughts", "content": current_thought_content}
|
|
)
|
|
|
|
# Check for two consecutive thoughts, with the second being empty
|
|
if last_thought_content and not current_thought_content:
|
|
emit("thought", {"type": "answer", "content": last_thought_content})
|
|
return last_thought_content
|
|
|
|
last_thought_content = current_thought_content
|
|
continue
|
|
|
|
return f"Max iterations reached. Last response: {assistant_message['content']}"
|
|
|
|
|
|
ANSWER_QUESTION_PROMPT2 = f"""
|
|
The current date is {datetime.now().strftime("%A, %B %d, %Y")}, your knowledge cutoff was December 2023.
|
|
You are Dewey, an AI assistant with access to external tools and the ability to think through complex problems. Your role is to assist users by leveraging tools when necessary, thinking deeply about problems, and providing accurate and helpful information, all with a cheerful, but witty personality. Here are the tools available to you:
|
|
|
|
{tool_manager.get_tools_and_descriptions_for_prompt()}
|
|
|
|
When addressing a query, follow these steps:
|
|
|
|
1. Analyze: Thoroughly analyze the query and consider multiple approaches to solving it.
|
|
|
|
2. Plan: Develop a plan of action, considering whether you need to use any tools or if you can answer directly.
|
|
|
|
3. Execute: If you need to use a tool, call it as you would a function. If not, proceed with your reasoning.
|
|
- Analyse the given prompt and decided whether or not it can be answered by a tool. If it can, use the following functions to respond with a JSON for a function call with its proper arguments that best answers the given prompt. Respond in the format \"name\": function name, \"parameters\": dictionary of argument name and its value. Do not use variables.
|
|
|
|
4. Reflect: After each step or tool use, reflect on the results:
|
|
- If successful, consider if the result fully answers the user's query or if additional steps are needed.
|
|
- If there were errors or the result is unsatisfactory, don't give up! Use Tree of Thoughts reasoning:
|
|
a) Generate multiple alternative approaches or modifications to your previous approach.
|
|
b) Briefly evaluate the potential of each alternative.
|
|
c) Choose the most promising alternative and execute it.
|
|
d) Repeat this process if needed, building upon your growing understanding of the problem.
|
|
e) You cannot return a final answer after an error using a tool, you must try again.
|
|
|
|
5. Iterate: Continue this process of execution and reflection, exploring different branches of thought as needed.
|
|
|
|
6. Conclude: When you believe you have a comprehensive answer to the user's query, provide your final answer.
|
|
|
|
Always explain your thought process, including your reasoning for each decision and how you arrived at your conclusions. If you're providing a final answer, or need more input from the user, put your response in tags <answer></answer>.
|
|
|
|
Remember, complex problems often require multiple steps and iterations. Don't hesitate to break down the problem, use tools multiple times, or explore different approaches to arrive at the best solution.
|
|
Before approaching a problem, come up with a few ways you might solve it, and then choose the most promising approach. Repeat this on each iteration.
|
|
"""
|
|
|
|
|
|
ANSWER_QUESTION_PROMPT = f"""
|
|
You are Dewey, an AI assistant with a personality that combines the wit and sarcasm of Dr. Gregory House from House MD with the helpfulness and intelligence of Jarvis from Iron Man. Today's date is {datetime.now().strftime("%A, %B %d, %Y")}. Your knowledge cutoff date is December 2023.
|
|
When responding to user queries, follow these steps:
|
|
|
|
Analyze the user's request
|
|
|
|
Option 1: [First interpretation of the request]
|
|
Option 2: [Second interpretation of the request]
|
|
... (up to 5 options)
|
|
|
|
Selected approach: [Choose the most promising option or combine the two best]
|
|
Break down the task into subtasks
|
|
|
|
Option 1: [First breakdown of subtasks]
|
|
Option 2: [Second breakdown of subtasks]
|
|
... (up to 5 options)
|
|
|
|
Selected breakdown: [Choose the most promising option or combine the two best]
|
|
For each subtask, consider available tools:
|
|
{tool_manager.get_tools_and_descriptions_for_prompt()}
|
|
|
|
Option 1: [First approach using tools]
|
|
Option 2: [Second approach using tools]
|
|
... (up to 5 options)
|
|
|
|
Selected tool usage: [Choose the most promising option or combine the two best]
|
|
Execute the plan
|
|
|
|
Option 1: [First execution plan]
|
|
Option 2: [Second execution plan]
|
|
... (up to 5 options)
|
|
|
|
Selected execution: [Choose the most promising option or combine the two best]
|
|
Review and refine the response
|
|
|
|
Option 1: [First refined response]
|
|
Option 2: [Second refined response]
|
|
... (up to 5 options)
|
|
|
|
Selected response: [Choose the most promising option or combine the two best]
|
|
Verify the results
|
|
|
|
Check 1: [First verification method]
|
|
Check 2: [Second verification method]
|
|
... (up to 5 checks)
|
|
|
|
Verification outcome: [Summarize the verification results]
|
|
Generate the final response to the user within <reply></reply> tags:
|
|
|
|
<reply>
|
|
[Final response goes here, incorporating the following guidelines:]
|
|
- Be conversational and engaging
|
|
- Maintain a witty and slightly sarcastic tone, reminiscent of Dr. Gregory House
|
|
- Deliver factual information with the precision and helpfulness of Jarvis
|
|
- Use clever analogies or pop culture references when appropriate
|
|
- Don't be afraid to challenge the user's assumptions, but always in a constructive manner
|
|
- Ensure the response is tailored to the user's query while showcasing your unique personality
|
|
</reply>
|
|
Remember to always be helpful, accurate, and respectful in your interactions, while maintaining your distinctive character blend of House and Jarvis.
|
|
"""
|
|
|
|
|
|
def get_system_resources():
|
|
cpu_load = psutil.cpu_percent()
|
|
memory = psutil.virtual_memory()
|
|
memory_usage = memory.percent
|
|
disk_io = psutil.disk_io_counters()
|
|
disk_read = disk_io.read_bytes
|
|
disk_write = disk_io.write_bytes
|
|
|
|
gpus = GPUtil.getGPUs()
|
|
gpu_load = gpus[0].load * 100 if gpus else 0
|
|
gpu_memory = gpus[0].memoryUtil * 100 if gpus else 0
|
|
|
|
return {
|
|
"cpu_load": cpu_load,
|
|
"memory_usage": memory_usage,
|
|
"disk_read": disk_read,
|
|
"disk_write": disk_write,
|
|
"gpu_load": gpu_load,
|
|
"gpu_memory": gpu_memory,
|
|
}
|
|
|
|
|
|
def send_system_resources():
|
|
last_disk_read = 0
|
|
last_disk_write = 0
|
|
while True:
|
|
resources = get_system_resources()
|
|
|
|
# Calculate disk I/O rates
|
|
disk_read_rate = (resources["disk_read"] - last_disk_read) / UPDATE_INTERVAL
|
|
disk_write_rate = (resources["disk_write"] - last_disk_write) / UPDATE_INTERVAL
|
|
|
|
socketio.emit(
|
|
"system_resources",
|
|
{
|
|
"cpu_load": resources["cpu_load"],
|
|
"memory_usage": resources["memory_usage"],
|
|
"disk_read_rate": disk_read_rate,
|
|
"disk_write_rate": disk_write_rate,
|
|
"gpu_load": resources["gpu_load"],
|
|
"gpu_memory": resources["gpu_memory"],
|
|
},
|
|
)
|
|
|
|
last_disk_read = resources["disk_read"]
|
|
last_disk_write = resources["disk_write"]
|
|
time.sleep(UPDATE_INTERVAL)
|
|
|
|
|
|
class QueryRequest(BaseModel):
|
|
message: str
|
|
|
|
|
|
class QueryResponse(BaseModel):
|
|
query_id: str
|
|
|
|
|
|
class QueryStatusResponse(BaseModel):
|
|
status: str
|
|
conversation_history: Optional[List[dict]]
|
|
|
|
|
|
@app.post(
|
|
"/api/v1/query"
|
|
)
|
|
def api_query():
|
|
"""
|
|
Submit a new query to the LLM Chat Server.
|
|
|
|
This endpoint requires authentication via an API key.
|
|
|
|
Sample cURL:
|
|
curl -X POST http://localhost:5001/api/v1/query \
|
|
-H "Content-Type: application/json" \
|
|
-H "X-API-Key: your-api-key" \
|
|
-d '{"message": "What is the capital of France?"}'
|
|
"""
|
|
if not ENABLE_API_ENDPOINTS:
|
|
return jsonify({"error": "API endpoints are disabled"}), 404
|
|
|
|
api_key = request.headers.get('X-API-Key')
|
|
if not api_key:
|
|
return jsonify({"error": "API key is required"}), 401
|
|
|
|
api_key_id = validate_api_key(api_key)
|
|
if not api_key_id:
|
|
return jsonify({"error": "Invalid API key"}), 401
|
|
|
|
data = request.get_json()
|
|
if not data or 'message' not in data:
|
|
return jsonify({"error": "Invalid request body"}), 400
|
|
|
|
user_input = data['message']
|
|
query_id = str(uuid.uuid4())
|
|
|
|
try:
|
|
db = get_db()
|
|
cursor = db.cursor()
|
|
cursor.execute(
|
|
"INSERT INTO Queries (id, ip, query, api_key_id, status) VALUES (?, ?, ?, ?, ?)",
|
|
(query_id, request.remote_addr, user_input, api_key_id, QueryStatus.QUEUED.value)
|
|
)
|
|
db.commit()
|
|
logger.info(f"Added new query to database: {query_id}")
|
|
|
|
return jsonify({"query_id": query_id})
|
|
except Exception as e:
|
|
logger.exception(f"Error during API query processing: {str(e)}")
|
|
return jsonify({"error": str(e)}), 500
|
|
|
|
|
|
@app.get(
|
|
"/api/v1/query_status/<string:query_id>"
|
|
)
|
|
def get_query_status(query_id: str):
|
|
"""
|
|
Get the status of a submitted query.
|
|
|
|
This endpoint requires authentication via an API key.
|
|
|
|
Sample cURL:
|
|
curl -X GET http://localhost:5001/api/v1/query_status/query-id-here \
|
|
-H "X-API-Key: your-api-key"
|
|
"""
|
|
api_key = request.headers.get('X-API-Key')
|
|
if not api_key:
|
|
return jsonify({"error": "API key is required"}), 401
|
|
|
|
api_key_id = validate_api_key(api_key)
|
|
if not api_key_id:
|
|
return jsonify({"error": "Invalid API key"}), 401
|
|
|
|
try:
|
|
db = get_db()
|
|
cursor = db.cursor()
|
|
cursor.execute("SELECT status, conversation_history FROM Queries WHERE id = ?", (query_id,))
|
|
result = cursor.fetchone()
|
|
|
|
if result is None:
|
|
return jsonify({"error": "Query not found"}), 404
|
|
|
|
status, conversation_history = result
|
|
|
|
response = {"status": status}
|
|
if status == QueryStatus.DONE.value:
|
|
response["conversation_history"] = json.loads(conversation_history)
|
|
|
|
return jsonify(response)
|
|
except Exception as e:
|
|
logger.exception("Error retrieving query status", error=str(e))
|
|
return jsonify({"error": str(e)}), 500
|
|
|
|
|
|
def answer_question_tools_api(
|
|
user_input: str, conversation_history: List[dict], max_retries: int = 100
|
|
):
|
|
global tool_manager
|
|
|
|
if not conversation_history:
|
|
conversation_history = [
|
|
{"role": "system", "content": ANSWER_QUESTION_PROMPT},
|
|
]
|
|
|
|
logger.info(
|
|
"Starting API chat",
|
|
user_input=user_input,
|
|
conversation_history=conversation_history,
|
|
)
|
|
conversation_history.append({"role": "user", "content": user_input})
|
|
|
|
last_thought_content = None
|
|
|
|
for _ in range(max_retries):
|
|
response = ollama.chat(
|
|
model=PRIMARY_MODEL,
|
|
messages=conversation_history,
|
|
tools=tool_manager.get_tools_for_ollama_dict(),
|
|
stream=False,
|
|
)
|
|
logger.info(f"API Response: {response}")
|
|
assistant_message = response["message"]
|
|
|
|
conversation_history.append(assistant_message)
|
|
|
|
if "tool_calls" in assistant_message:
|
|
for tool_call in assistant_message["tool_calls"]:
|
|
tool_name = tool_call["function"]["name"]
|
|
tool_args = tool_call["function"]["arguments"]
|
|
if tool_name is not None and tool_args is not None:
|
|
tool_response = tool_manager.get_tool(tool_name).execute(tool_args)
|
|
conversation_history.append({"role": "tool", "content": tool_response})
|
|
logger.info(f"API Tool response: {tool_response}")
|
|
else:
|
|
logger.warning(f"Skipping tool call due to missing tool name or arguments: {tool_call}")
|
|
else:
|
|
if "<reply>" in assistant_message["content"].lower():
|
|
reply_content = re.search(
|
|
r"<reply>(.*?)</reply>", assistant_message["content"], re.DOTALL
|
|
)
|
|
if reply_content:
|
|
reply_answer = reply_content.group(1).strip()
|
|
conversation_history.append(
|
|
{"role": "assistant", "content": reply_answer}
|
|
)
|
|
return conversation_history
|
|
else:
|
|
current_thought_content = assistant_message["content"].strip()
|
|
|
|
if last_thought_content and not current_thought_content:
|
|
conversation_history.append(
|
|
{"role": "assistant", "content": last_thought_content}
|
|
)
|
|
return conversation_history
|
|
|
|
last_thought_content = current_thought_content
|
|
continue
|
|
|
|
conversation_history.append(
|
|
{
|
|
"role": "assistant",
|
|
"content": f"Max iterations reached. Last response: {assistant_message['content']}",
|
|
}
|
|
)
|
|
return conversation_history
|
|
|
|
|
|
def process_queries():
|
|
logger.info("Query processing thread started")
|
|
with app.app_context():
|
|
while True:
|
|
try:
|
|
db = get_db()
|
|
cursor = db.cursor()
|
|
|
|
# First, check if there are any PROCESSING queries
|
|
cursor.execute(
|
|
"SELECT id FROM Queries WHERE status = ? LIMIT 1",
|
|
(QueryStatus.PROCESSING.value,)
|
|
)
|
|
processing_query = cursor.fetchone()
|
|
if processing_query:
|
|
logger.info(f"Found processing query: {processing_query[0]}. Waiting...")
|
|
db.commit()
|
|
time.sleep(10)
|
|
continue
|
|
|
|
# If no PROCESSING queries, get the oldest QUEUED query
|
|
cursor.execute(
|
|
"SELECT id, query FROM Queries WHERE status = ? ORDER BY timestamp ASC LIMIT 1",
|
|
(QueryStatus.QUEUED.value,)
|
|
)
|
|
result = cursor.fetchone()
|
|
|
|
if result:
|
|
query_id, user_input = result
|
|
logger.info(f"Processing query: {query_id}")
|
|
|
|
# Update status to PROCESSING
|
|
cursor.execute(
|
|
"UPDATE Queries SET status = ? WHERE id = ?",
|
|
(QueryStatus.PROCESSING.value, query_id)
|
|
)
|
|
db.commit()
|
|
logger.info(f"Updated query {query_id} status to PROCESSING")
|
|
|
|
# Fetch conversation history if it exists
|
|
cursor.execute("SELECT conversation_history FROM Queries WHERE id = ?", (query_id,))
|
|
conversation_history_result = cursor.fetchone()
|
|
|
|
if conversation_history_result and conversation_history_result[0]:
|
|
conversation_history = json.loads(conversation_history_result[0])
|
|
else:
|
|
conversation_history = [{"role": "system", "content": ANSWER_QUESTION_PROMPT}]
|
|
|
|
logger.info(f"Starting answer_question_tools_api for query {query_id}")
|
|
final_conversation_history = answer_question_tools_api(user_input, conversation_history)
|
|
logger.info(f"Finished answer_question_tools_api for query {query_id}")
|
|
|
|
# Update with final result and set status to DONE
|
|
db.execute("BEGIN TRANSACTION")
|
|
cursor.execute(
|
|
"UPDATE Queries SET conversation_history = ?, status = ? WHERE id = ?",
|
|
(json.dumps(final_conversation_history), QueryStatus.DONE.value, query_id)
|
|
)
|
|
db.commit()
|
|
logger.info(f"Updated query {query_id} status to DONE")
|
|
else:
|
|
logger.info("No queued queries found. Waiting...")
|
|
time.sleep(5) # Wait for 5 seconds before checking again if no queries are found
|
|
except Exception as e:
|
|
logger.exception(f"Error processing query: {str(e)}")
|
|
time.sleep(1) # Wait for 1 second before retrying in case of an error
|
|
|
|
|
|
# Admin endpoint for generating API keys
|
|
class GenerateKeyRequest(BaseModel):
|
|
username: str
|
|
|
|
|
|
class GenerateKeyResponse(BaseModel):
|
|
username: str
|
|
api_key: str
|
|
|
|
|
|
@app.post(
|
|
"/admin/generate_key"
|
|
)
|
|
def generate_api_key():
|
|
"""
|
|
Generate a new API key for a user.
|
|
|
|
This endpoint requires authentication via an admin key.
|
|
|
|
Sample cURL:
|
|
curl -X POST http://localhost:5001/admin/generate_key \
|
|
-H "Content-Type: application/json" \
|
|
-H "X-Admin-Key: your-admin-key" \
|
|
-d '{"username": "new_user"}'
|
|
"""
|
|
admin_key = request.headers.get("X-Admin-Key")
|
|
if not admin_key or admin_key != ADMIN_KEY:
|
|
return jsonify({"error": "Invalid admin key"}), 401
|
|
|
|
data = request.get_json()
|
|
if not data or 'username' not in data:
|
|
return jsonify({"error": "Invalid request body"}), 400
|
|
|
|
username = data['username']
|
|
api_key = secrets.token_urlsafe(32)
|
|
|
|
try:
|
|
db = get_db()
|
|
cursor = db.cursor()
|
|
cursor.execute(
|
|
"INSERT INTO Keys (username, api_key) VALUES (?, ?)", (username, api_key)
|
|
)
|
|
db.commit()
|
|
return jsonify({"username": username, "api_key": api_key})
|
|
except sqlite3.IntegrityError:
|
|
return jsonify({"error": "Username already exists"}), 400
|
|
except Exception as e:
|
|
logger.exception("Error generating API key", error=str(e))
|
|
return jsonify({"error": str(e)}), 500
|
|
|
|
|
|
def start_processing_thread():
|
|
global processing_thread, processing_thread_started
|
|
if not processing_thread_started:
|
|
processing_thread = threading.Thread(target=process_queries, daemon=True)
|
|
processing_thread.start()
|
|
processing_thread_started = True
|
|
logger.info("Query processing thread started")
|
|
|
|
|
|
def allowed_file(filename):
|
|
return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS
|
|
|
|
|
|
@app.post("/api/v1/query_with_image")
|
|
def api_query_with_image():
|
|
"""
|
|
Submit a new query to the LLM Chat Server with an optional image.
|
|
|
|
This endpoint requires authentication via an API key.
|
|
|
|
Sample cURL:
|
|
curl -X POST http://localhost:5001/api/v1/query_with_image \
|
|
-H "X-API-Key: your-api-key" \
|
|
-F "message=What's in this image?" \
|
|
-F "image=@path/to/your/image.jpg"
|
|
"""
|
|
if not ENABLE_API_ENDPOINTS:
|
|
return jsonify({"error": "API endpoints are disabled"}), 404
|
|
|
|
api_key = request.headers.get('X-API-Key')
|
|
if not api_key:
|
|
return jsonify({"error": "API key is required"}), 401
|
|
|
|
api_key_id = validate_api_key(api_key)
|
|
if not api_key_id:
|
|
return jsonify({"error": "Invalid API key"}), 401
|
|
|
|
if 'message' not in request.form:
|
|
return jsonify({"error": "Message is required"}), 400
|
|
|
|
user_input = request.form['message']
|
|
query_id = str(uuid.uuid4())
|
|
|
|
image_base64 = None
|
|
if 'image' in request.files:
|
|
file = request.files['image']
|
|
if file and allowed_file(file.filename):
|
|
if file.content_length > MAX_IMAGE_SIZE:
|
|
return jsonify({"error": "Image size exceeds 1MB limit"}), 400
|
|
|
|
# Read and encode the image
|
|
image_data = file.read()
|
|
image_base64 = base64.b64encode(image_data).decode('utf-8')
|
|
|
|
try:
|
|
db = get_db()
|
|
cursor = db.cursor()
|
|
cursor.execute(
|
|
"INSERT INTO Queries (id, ip, query, api_key_id, status) VALUES (?, ?, ?, ?, ?)",
|
|
(query_id, request.remote_addr, user_input, api_key_id, QueryStatus.QUEUED.value)
|
|
)
|
|
db.commit()
|
|
logger.info(f"Added new query with image to database: {query_id}")
|
|
|
|
# If there's an image, add it to the conversation history
|
|
if image_base64:
|
|
conversation_history = [
|
|
{"role": "system", "content": ANSWER_QUESTION_PROMPT},
|
|
{"role": "user", "content": f"[An image was uploaded with this message] {user_input}"},
|
|
{"role": "system", "content": f"An image was uploaded. You can analyze it using the analyze_image tool with the following base64 string: {image_base64}"}
|
|
]
|
|
cursor.execute(
|
|
"UPDATE Queries SET conversation_history = ? WHERE id = ?",
|
|
(json.dumps(conversation_history), query_id)
|
|
)
|
|
db.commit()
|
|
|
|
return jsonify({"query_id": query_id})
|
|
except Exception as e:
|
|
logger.exception(f"Error during API query processing with image: {str(e)}")
|
|
return jsonify({"error": str(e)}), 500
|
|
|
|
|
|
# Replace the if __main__ block with this:
|
|
if __name__ == "__main__":
|
|
logger.info("Starting LLM Chat Server")
|
|
init_db() # Initialize the database
|
|
|
|
if ENABLE_FRONTEND or ENABLE_CHAT_ENDPOINTS:
|
|
threading.Thread(target=send_system_resources, daemon=True).start()
|
|
logger.info("System resources thread started")
|
|
|
|
if ENABLE_API_ENDPOINTS:
|
|
start_processing_thread()
|
|
|
|
logger.info("Starting Flask application")
|
|
socketio.run(app, debug=True, host="0.0.0.0", port=5001)
|
|
else:
|
|
# This will run when the module is imported, e.g., by the reloader
|
|
if ENABLE_API_ENDPOINTS:
|
|
start_processing_thread() |