formatting
This commit is contained in:
parent
4a72a0fc95
commit
3624c33c51
85
main.py
85
main.py
@ -1,17 +1,20 @@
|
|||||||
import sys
|
|
||||||
import argparse
|
import argparse
|
||||||
from skimage.io import imread, imsave
|
import sys
|
||||||
from scipy.stats import moment
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from numpy import array, all, uint8
|
from numpy import all, array, uint8
|
||||||
from rich.console import Console
|
from rich.console import Console
|
||||||
|
from scipy.stats import moment
|
||||||
|
from skimage.io import imread, imsave
|
||||||
|
|
||||||
console = Console()
|
console = Console()
|
||||||
|
|
||||||
|
|
||||||
def save_image(data, name, resolution):
|
def save_image(data, name, resolution):
|
||||||
final_image = data.reshape(resolution)
|
final_image = data.reshape(resolution)
|
||||||
imsave(f"{name}.png", final_image)
|
imsave(f"{name}.png", final_image)
|
||||||
|
|
||||||
|
|
||||||
def find_nearest_point(data, target):
|
def find_nearest_point(data, target):
|
||||||
idx = np.array([calc_distance(p, target) for p in data]).argmin()
|
idx = np.array([calc_distance(p, target) for p in data]).argmin()
|
||||||
return data[idx]
|
return data[idx]
|
||||||
@ -22,7 +25,7 @@ def centroidnp(arr):
|
|||||||
sum_x = np.sum(arr[:, 0])
|
sum_x = np.sum(arr[:, 0])
|
||||||
sum_y = np.sum(arr[:, 1])
|
sum_y = np.sum(arr[:, 1])
|
||||||
sum_z = np.sum(arr[:, 2])
|
sum_z = np.sum(arr[:, 2])
|
||||||
return sum_x/length, sum_y/length, sum_z/length
|
return sum_x / length, sum_y / length, sum_z / length
|
||||||
|
|
||||||
|
|
||||||
def calc_distance(x, y):
|
def calc_distance(x, y):
|
||||||
@ -62,7 +65,9 @@ def k_means(data, count):
|
|||||||
# Calculate new mean
|
# Calculate new mean
|
||||||
raw_mean = centroidnp(clusters[mean_key])
|
raw_mean = centroidnp(clusters[mean_key])
|
||||||
nearest_mean_point = find_nearest_point(data, raw_mean)
|
nearest_mean_point = find_nearest_point(data, raw_mean)
|
||||||
means_distance = means_distance + calc_distance(mean, nearest_mean_point)
|
means_distance = means_distance + calc_distance(
|
||||||
|
mean, nearest_mean_point
|
||||||
|
)
|
||||||
new_means.append(nearest_mean_point)
|
new_means.append(nearest_mean_point)
|
||||||
means_distance = means_distance / float(count)
|
means_distance = means_distance / float(count)
|
||||||
distance_delta = abs(previous_distance - means_distance)
|
distance_delta = abs(previous_distance - means_distance)
|
||||||
@ -77,51 +82,75 @@ console.log("[blue] Starting with image of size: ", starting_resolution)
|
|||||||
raw_pixels = im.reshape(-1, 3)
|
raw_pixels = im.reshape(-1, 3)
|
||||||
raw_shape = raw_pixels.shape
|
raw_shape = raw_pixels.shape
|
||||||
|
|
||||||
colors = np.array([np.array([0,43,54]),
|
colors = np.array(
|
||||||
np.array([7,54,66]),
|
[
|
||||||
np.array([88,110,117]),
|
np.array([0, 43, 54]),
|
||||||
np.array([101,123,131]),
|
np.array([7, 54, 66]),
|
||||||
np.array([131,148,150]),
|
np.array([88, 110, 117]),
|
||||||
np.array([147,161,161]),
|
np.array([101, 123, 131]),
|
||||||
np.array([238,232,213]),
|
np.array([131, 148, 150]),
|
||||||
np.array([253,246,227]),
|
np.array([147, 161, 161]),
|
||||||
np.array([181,137,0]),
|
np.array([238, 232, 213]),
|
||||||
np.array([203,75,22]),
|
np.array([253, 246, 227]),
|
||||||
np.array([220,50,47]),
|
np.array([181, 137, 0]),
|
||||||
np.array([211,54,130]),
|
np.array([203, 75, 22]),
|
||||||
np.array([108,113,196]),
|
np.array([220, 50, 47]),
|
||||||
np.array([38,139,210]),
|
np.array([211, 54, 130]),
|
||||||
np.array([42,161,152]),
|
np.array([108, 113, 196]),
|
||||||
np.array([133,153,0])])
|
np.array([38, 139, 210]),
|
||||||
|
np.array([42, 161, 152]),
|
||||||
|
np.array([133, 153, 0]),
|
||||||
|
]
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
def main():
|
def main():
|
||||||
# Find the colors that most represent the image
|
# Find the colors that most represent the image
|
||||||
color_means = k_means(raw_pixels, len(colors))
|
color_means = k_means(raw_pixels, len(colors))
|
||||||
console.log("[green] Found cluster centers: ", color_means)
|
console.log("[green] Found cluster centers: ", color_means)
|
||||||
|
|
||||||
# Remap image to the center points
|
# Remap image to the center points
|
||||||
console.log("[purple] Re-mapping image")
|
console.log("[purple] Re-mapping image")
|
||||||
output_raw = np.zeros_like(raw_pixels)
|
output_raw = np.zeros_like(raw_pixels)
|
||||||
for i in range(len(raw_pixels)):
|
for i in range(len(raw_pixels)):
|
||||||
output_raw[i] = find_nearest_point(color_means, raw_pixels[i])
|
output_raw[i] = find_nearest_point(color_means, raw_pixels[i])
|
||||||
|
|
||||||
# Map means to the colors provided by the user
|
# Map means to the colors provided by the user
|
||||||
pairs = []
|
pairs = []
|
||||||
tmp_means = color_means
|
tmp_means = color_means
|
||||||
for color in colors:
|
for color in colors:
|
||||||
m = find_nearest_point(tmp_means, color)
|
m = find_nearest_point(tmp_means, color)
|
||||||
pairs.append((m, color))
|
pairs.append((m, color))
|
||||||
idxs, = np.where(np.all(tmp_means == m, axis=1))
|
(idxs,) = np.where(np.all(tmp_means == m, axis=1))
|
||||||
tmp_means = np.delete(tmp_means, idxs, axis=0)
|
tmp_means = np.delete(tmp_means, idxs, axis=0)
|
||||||
|
|
||||||
# Recolor the image
|
# Recolor the image
|
||||||
for pair in pairs:
|
for pair in pairs:
|
||||||
idxs, = np.where(np.all(output_raw == pair[0], axis=1))
|
(idxs,) = np.where(np.all(output_raw == pair[0], axis=1))
|
||||||
output_raw[idxs] = pair[1]
|
output_raw[idxs] = pair[1]
|
||||||
save_image(output_raw, "final", starting_resolution)
|
save_image(output_raw, "final", starting_resolution)
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
prog="Recolor",
|
||||||
|
description="Recolor changes the color palette of an image to the one provided by the user",
|
||||||
|
)
|
||||||
|
color_loader_group = parser.add_mutually_exclusive_group(required=True)
|
||||||
|
color_loader_group.add_argument(
|
||||||
|
"-f",
|
||||||
|
"--file",
|
||||||
|
description="A file of RGB color values, with one color per line",
|
||||||
|
dest="fpath",
|
||||||
|
default=None,
|
||||||
|
)
|
||||||
|
color_loader_group.add_argument(
|
||||||
|
"-l",
|
||||||
|
"--list",
|
||||||
|
description="A list of RGB color values. Example: '123,90,89 212,7,0'",
|
||||||
|
dest="clist",
|
||||||
|
default=None,
|
||||||
|
)
|
||||||
main()
|
main()
|
||||||
pass
|
pass
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user