formatting
This commit is contained in:
parent
4a72a0fc95
commit
3624c33c51
85
main.py
85
main.py
@ -1,17 +1,20 @@
|
||||
import sys
|
||||
import argparse
|
||||
from skimage.io import imread, imsave
|
||||
from scipy.stats import moment
|
||||
import sys
|
||||
|
||||
import numpy as np
|
||||
from numpy import array, all, uint8
|
||||
from numpy import all, array, uint8
|
||||
from rich.console import Console
|
||||
from scipy.stats import moment
|
||||
from skimage.io import imread, imsave
|
||||
|
||||
console = Console()
|
||||
|
||||
|
||||
def save_image(data, name, resolution):
|
||||
final_image = data.reshape(resolution)
|
||||
imsave(f"{name}.png", final_image)
|
||||
|
||||
|
||||
def find_nearest_point(data, target):
|
||||
idx = np.array([calc_distance(p, target) for p in data]).argmin()
|
||||
return data[idx]
|
||||
@ -22,7 +25,7 @@ def centroidnp(arr):
|
||||
sum_x = np.sum(arr[:, 0])
|
||||
sum_y = np.sum(arr[:, 1])
|
||||
sum_z = np.sum(arr[:, 2])
|
||||
return sum_x/length, sum_y/length, sum_z/length
|
||||
return sum_x / length, sum_y / length, sum_z / length
|
||||
|
||||
|
||||
def calc_distance(x, y):
|
||||
@ -62,7 +65,9 @@ def k_means(data, count):
|
||||
# Calculate new mean
|
||||
raw_mean = centroidnp(clusters[mean_key])
|
||||
nearest_mean_point = find_nearest_point(data, raw_mean)
|
||||
means_distance = means_distance + calc_distance(mean, nearest_mean_point)
|
||||
means_distance = means_distance + calc_distance(
|
||||
mean, nearest_mean_point
|
||||
)
|
||||
new_means.append(nearest_mean_point)
|
||||
means_distance = means_distance / float(count)
|
||||
distance_delta = abs(previous_distance - means_distance)
|
||||
@ -77,51 +82,75 @@ console.log("[blue] Starting with image of size: ", starting_resolution)
|
||||
raw_pixels = im.reshape(-1, 3)
|
||||
raw_shape = raw_pixels.shape
|
||||
|
||||
colors = np.array([np.array([0,43,54]),
|
||||
np.array([7,54,66]),
|
||||
np.array([88,110,117]),
|
||||
np.array([101,123,131]),
|
||||
np.array([131,148,150]),
|
||||
np.array([147,161,161]),
|
||||
np.array([238,232,213]),
|
||||
np.array([253,246,227]),
|
||||
np.array([181,137,0]),
|
||||
np.array([203,75,22]),
|
||||
np.array([220,50,47]),
|
||||
np.array([211,54,130]),
|
||||
np.array([108,113,196]),
|
||||
np.array([38,139,210]),
|
||||
np.array([42,161,152]),
|
||||
np.array([133,153,0])])
|
||||
colors = np.array(
|
||||
[
|
||||
np.array([0, 43, 54]),
|
||||
np.array([7, 54, 66]),
|
||||
np.array([88, 110, 117]),
|
||||
np.array([101, 123, 131]),
|
||||
np.array([131, 148, 150]),
|
||||
np.array([147, 161, 161]),
|
||||
np.array([238, 232, 213]),
|
||||
np.array([253, 246, 227]),
|
||||
np.array([181, 137, 0]),
|
||||
np.array([203, 75, 22]),
|
||||
np.array([220, 50, 47]),
|
||||
np.array([211, 54, 130]),
|
||||
np.array([108, 113, 196]),
|
||||
np.array([38, 139, 210]),
|
||||
np.array([42, 161, 152]),
|
||||
np.array([133, 153, 0]),
|
||||
]
|
||||
)
|
||||
|
||||
|
||||
def main():
|
||||
# Find the colors that most represent the image
|
||||
# Find the colors that most represent the image
|
||||
color_means = k_means(raw_pixels, len(colors))
|
||||
console.log("[green] Found cluster centers: ", color_means)
|
||||
|
||||
# Remap image to the center points
|
||||
# Remap image to the center points
|
||||
console.log("[purple] Re-mapping image")
|
||||
output_raw = np.zeros_like(raw_pixels)
|
||||
for i in range(len(raw_pixels)):
|
||||
output_raw[i] = find_nearest_point(color_means, raw_pixels[i])
|
||||
|
||||
# Map means to the colors provided by the user
|
||||
# Map means to the colors provided by the user
|
||||
pairs = []
|
||||
tmp_means = color_means
|
||||
for color in colors:
|
||||
m = find_nearest_point(tmp_means, color)
|
||||
pairs.append((m, color))
|
||||
idxs, = np.where(np.all(tmp_means == m, axis=1))
|
||||
(idxs,) = np.where(np.all(tmp_means == m, axis=1))
|
||||
tmp_means = np.delete(tmp_means, idxs, axis=0)
|
||||
|
||||
# Recolor the image
|
||||
# Recolor the image
|
||||
for pair in pairs:
|
||||
idxs, = np.where(np.all(output_raw == pair[0], axis=1))
|
||||
(idxs,) = np.where(np.all(output_raw == pair[0], axis=1))
|
||||
output_raw[idxs] = pair[1]
|
||||
save_image(output_raw, "final", starting_resolution)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(
|
||||
prog="Recolor",
|
||||
description="Recolor changes the color palette of an image to the one provided by the user",
|
||||
)
|
||||
color_loader_group = parser.add_mutually_exclusive_group(required=True)
|
||||
color_loader_group.add_argument(
|
||||
"-f",
|
||||
"--file",
|
||||
description="A file of RGB color values, with one color per line",
|
||||
dest="fpath",
|
||||
default=None,
|
||||
)
|
||||
color_loader_group.add_argument(
|
||||
"-l",
|
||||
"--list",
|
||||
description="A list of RGB color values. Example: '123,90,89 212,7,0'",
|
||||
dest="clist",
|
||||
default=None,
|
||||
)
|
||||
main()
|
||||
pass
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user