program is fast now! can package it up
This commit is contained in:
parent
3624c33c51
commit
600db2f029
125
main.py
125
main.py
@ -1,18 +1,23 @@
|
||||
import argparse
|
||||
import sys
|
||||
from pathlib import Path
|
||||
import multiprocessing
|
||||
from itertools import product
|
||||
|
||||
import numpy as np
|
||||
from numpy import all, array, uint8
|
||||
from rich.console import Console
|
||||
from scipy.stats import moment
|
||||
from skimage.io import imread, imsave
|
||||
from PIL import Image
|
||||
from numba import njit, prange
|
||||
from scipy.spatial import KDTree
|
||||
|
||||
console = Console()
|
||||
|
||||
|
||||
def save_image(data, name, resolution):
|
||||
final_image = data.reshape(resolution)
|
||||
imsave(f"{name}.png", final_image)
|
||||
imsave(name, final_image)
|
||||
|
||||
|
||||
def find_nearest_point(data, target):
|
||||
@ -76,44 +81,37 @@ def k_means(data, count):
|
||||
return means
|
||||
|
||||
|
||||
im = imread("zarin.jpg")
|
||||
def find_closest_points(points1, points2):
|
||||
# Build a k-d tree from the points in the second array
|
||||
tree = KDTree(points2)
|
||||
|
||||
# Find the closest point in the second array for each element in the first array
|
||||
closest_points_indices = tree.query(points1)[1]
|
||||
closest_points = points2[closest_points_indices]
|
||||
|
||||
# Return the result
|
||||
return closest_points
|
||||
|
||||
|
||||
def main(image_name, output_name, colors):
|
||||
im = imread(image_name)
|
||||
starting_resolution = im.shape
|
||||
im_resized = np.array(Image.fromarray(im).resize(size=(150, 150)))
|
||||
console.log("[blue] Starting with image of size: ", starting_resolution)
|
||||
raw_pixels = im.reshape(-1, 3)
|
||||
raw_shape = raw_pixels.shape
|
||||
raw_pixels_resized = im_resized.reshape(-1, 3)
|
||||
|
||||
colors = np.array(
|
||||
[
|
||||
np.array([0, 43, 54]),
|
||||
np.array([7, 54, 66]),
|
||||
np.array([88, 110, 117]),
|
||||
np.array([101, 123, 131]),
|
||||
np.array([131, 148, 150]),
|
||||
np.array([147, 161, 161]),
|
||||
np.array([238, 232, 213]),
|
||||
np.array([253, 246, 227]),
|
||||
np.array([181, 137, 0]),
|
||||
np.array([203, 75, 22]),
|
||||
np.array([220, 50, 47]),
|
||||
np.array([211, 54, 130]),
|
||||
np.array([108, 113, 196]),
|
||||
np.array([38, 139, 210]),
|
||||
np.array([42, 161, 152]),
|
||||
np.array([133, 153, 0]),
|
||||
]
|
||||
)
|
||||
|
||||
|
||||
def main():
|
||||
# Find the colors that most represent the image
|
||||
color_means = k_means(raw_pixels, len(colors))
|
||||
color_means = k_means(raw_pixels_resized, len(colors))
|
||||
console.log("[green] Found cluster centers: ", color_means)
|
||||
|
||||
# Remap image to the center points
|
||||
raw_pixels = im.reshape(-1, 3)
|
||||
raw_shape = raw_pixels.shape
|
||||
console.log("[purple] Re-mapping image")
|
||||
output_raw = np.zeros_like(raw_pixels)
|
||||
for i in range(len(raw_pixels)):
|
||||
output_raw[i] = find_nearest_point(color_means, raw_pixels[i])
|
||||
output_raw = find_closest_points(raw_pixels, color_means)
|
||||
console.log("[purple] Re-mapping image complete (phase 1)")
|
||||
|
||||
|
||||
# Map means to the colors provided by the user
|
||||
pairs = []
|
||||
@ -128,7 +126,10 @@ def main():
|
||||
for pair in pairs:
|
||||
(idxs,) = np.where(np.all(output_raw == pair[0], axis=1))
|
||||
output_raw[idxs] = pair[1]
|
||||
save_image(output_raw, "final", starting_resolution)
|
||||
|
||||
if output_name is None:
|
||||
output_name = f"{input_image.parents[0]}/recolored-{input_image.name}"
|
||||
save_image(output_raw, output_name, starting_resolution)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
@ -136,22 +137,66 @@ if __name__ == "__main__":
|
||||
prog="Recolor",
|
||||
description="Recolor changes the color palette of an image to the one provided by the user",
|
||||
)
|
||||
parser.add_argument(
|
||||
"filename", help="Input image"
|
||||
)
|
||||
parser.add_argument(
|
||||
"-o", "--output", help="Output image destination, defaults to the same path as the input titled [path]/recolored-[name]", dest="outname"
|
||||
)
|
||||
color_loader_group = parser.add_mutually_exclusive_group(required=True)
|
||||
color_loader_group.add_argument(
|
||||
"-f",
|
||||
"--file",
|
||||
description="A file of RGB color values, with one color per line",
|
||||
dest="fpath",
|
||||
default=None,
|
||||
help="A file of RGB color values, with one color per line",
|
||||
dest="cfpath",
|
||||
)
|
||||
color_loader_group.add_argument(
|
||||
"-l",
|
||||
"--list",
|
||||
description="A list of RGB color values. Example: '123,90,89 212,7,0'",
|
||||
nargs='+',
|
||||
help="A list of RGB color values. Example: '123,90,89 212,7,0'",
|
||||
dest="clist",
|
||||
default=None,
|
||||
)
|
||||
main()
|
||||
pass
|
||||
# Check inputs
|
||||
args = parser.parse_args()
|
||||
input_image = Path(args.filename)
|
||||
if not input_image.exists():
|
||||
console.log("[red] Error: input image path does not exist")
|
||||
sys.exit(-1)
|
||||
else:
|
||||
if not input_image.is_file():
|
||||
console.log("[red] Error: input image path is not a file")
|
||||
sys.exit(-1)
|
||||
|
||||
sys.exit(0)
|
||||
# Parse out color
|
||||
colors = []
|
||||
|
||||
if args.cfpath is not None:
|
||||
# Load from file
|
||||
lines = []
|
||||
input_colors = Path(args.cfpath)
|
||||
with open(input_colors) as f:
|
||||
lines = [line.rstrip() for line in f]
|
||||
# Split each line
|
||||
for line in lines:
|
||||
vals = []
|
||||
sp = line.split(',')
|
||||
if len(sp) != 3:
|
||||
console.log("[red] Error: RGB value in file is malformed -- not exactly 3 values", args.cfpath, line)
|
||||
sys.exit(-2)
|
||||
for v in sp:
|
||||
vals.append(int(v))
|
||||
colors.append(np.array(vals))
|
||||
else:
|
||||
#Load from list
|
||||
for line in args.clist:
|
||||
vals = []
|
||||
sp = line.split(',')
|
||||
if len(sp) != 3:
|
||||
console.log("[red] Error: RGB value in list is malformed -- not exactly 3 values", line)
|
||||
sys.exit(-2)
|
||||
for v in sp:
|
||||
vals.append(int(v))
|
||||
colors.append(np.array(vals))
|
||||
|
||||
main(input_image, Path(args.outname) if args.outname is not None else None, np.array(colors))
|
||||
|
Loading…
Reference in New Issue
Block a user