Recoloring works, adding cli interface
This commit is contained in:
parent
78272b1646
commit
b30d77775e
163
.gitignore
vendored
163
.gitignore
vendored
@ -1,3 +1,166 @@
|
|||||||
|
# Test images
|
||||||
*.png
|
*.png
|
||||||
*.jpg
|
*.jpg
|
||||||
*.jpeg
|
*.jpeg
|
||||||
|
*.gif
|
||||||
|
|
||||||
|
# Byte-compiled / optimized / DLL files
|
||||||
|
__pycache__/
|
||||||
|
*.py[cod]
|
||||||
|
*$py.class
|
||||||
|
|
||||||
|
# C extensions
|
||||||
|
*.so
|
||||||
|
|
||||||
|
# Distribution / packaging
|
||||||
|
.Python
|
||||||
|
build/
|
||||||
|
develop-eggs/
|
||||||
|
dist/
|
||||||
|
downloads/
|
||||||
|
eggs/
|
||||||
|
.eggs/
|
||||||
|
lib/
|
||||||
|
lib64/
|
||||||
|
parts/
|
||||||
|
sdist/
|
||||||
|
var/
|
||||||
|
wheels/
|
||||||
|
share/python-wheels/
|
||||||
|
*.egg-info/
|
||||||
|
.installed.cfg
|
||||||
|
*.egg
|
||||||
|
MANIFEST
|
||||||
|
|
||||||
|
# PyInstaller
|
||||||
|
# Usually these files are written by a python script from a template
|
||||||
|
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
||||||
|
*.manifest
|
||||||
|
*.spec
|
||||||
|
|
||||||
|
# Installer logs
|
||||||
|
pip-log.txt
|
||||||
|
pip-delete-this-directory.txt
|
||||||
|
|
||||||
|
# Unit test / coverage reports
|
||||||
|
htmlcov/
|
||||||
|
.tox/
|
||||||
|
.nox/
|
||||||
|
.coverage
|
||||||
|
.coverage.*
|
||||||
|
.cache
|
||||||
|
nosetests.xml
|
||||||
|
coverage.xml
|
||||||
|
*.cover
|
||||||
|
*.py,cover
|
||||||
|
.hypothesis/
|
||||||
|
.pytest_cache/
|
||||||
|
cover/
|
||||||
|
|
||||||
|
# Translations
|
||||||
|
*.mo
|
||||||
|
*.pot
|
||||||
|
|
||||||
|
# Django stuff:
|
||||||
|
*.log
|
||||||
|
local_settings.py
|
||||||
|
db.sqlite3
|
||||||
|
db.sqlite3-journal
|
||||||
|
|
||||||
|
# Flask stuff:
|
||||||
|
instance/
|
||||||
|
.webassets-cache
|
||||||
|
|
||||||
|
# Scrapy stuff:
|
||||||
|
.scrapy
|
||||||
|
|
||||||
|
# Sphinx documentation
|
||||||
|
docs/_build/
|
||||||
|
|
||||||
|
# PyBuilder
|
||||||
|
.pybuilder/
|
||||||
|
target/
|
||||||
|
|
||||||
|
# Jupyter Notebook
|
||||||
|
.ipynb_checkpoints
|
||||||
|
|
||||||
|
# IPython
|
||||||
|
profile_default/
|
||||||
|
ipython_config.py
|
||||||
|
|
||||||
|
# pyenv
|
||||||
|
# For a library or package, you might want to ignore these files since the code is
|
||||||
|
# intended to run in multiple environments; otherwise, check them in:
|
||||||
|
# .python-version
|
||||||
|
|
||||||
|
# pipenv
|
||||||
|
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
||||||
|
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
||||||
|
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
||||||
|
# install all needed dependencies.
|
||||||
|
#Pipfile.lock
|
||||||
|
|
||||||
|
# poetry
|
||||||
|
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
||||||
|
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
||||||
|
# commonly ignored for libraries.
|
||||||
|
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
||||||
|
#poetry.lock
|
||||||
|
|
||||||
|
# pdm
|
||||||
|
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
||||||
|
#pdm.lock
|
||||||
|
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
||||||
|
# in version control.
|
||||||
|
# https://pdm.fming.dev/#use-with-ide
|
||||||
|
.pdm.toml
|
||||||
|
|
||||||
|
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
||||||
|
__pypackages__/
|
||||||
|
|
||||||
|
# Celery stuff
|
||||||
|
celerybeat-schedule
|
||||||
|
celerybeat.pid
|
||||||
|
|
||||||
|
# SageMath parsed files
|
||||||
|
*.sage.py
|
||||||
|
|
||||||
|
# Environments
|
||||||
|
.env
|
||||||
|
.venv
|
||||||
|
env/
|
||||||
|
venv/
|
||||||
|
ENV/
|
||||||
|
env.bak/
|
||||||
|
venv.bak/
|
||||||
|
|
||||||
|
# Spyder project settings
|
||||||
|
.spyderproject
|
||||||
|
.spyproject
|
||||||
|
|
||||||
|
# Rope project settings
|
||||||
|
.ropeproject
|
||||||
|
|
||||||
|
# mkdocs documentation
|
||||||
|
/site
|
||||||
|
|
||||||
|
# mypy
|
||||||
|
.mypy_cache/
|
||||||
|
.dmypy.json
|
||||||
|
dmypy.json
|
||||||
|
|
||||||
|
# Pyre type checker
|
||||||
|
.pyre/
|
||||||
|
|
||||||
|
# pytype static type analyzer
|
||||||
|
.pytype/
|
||||||
|
|
||||||
|
# Cython debug symbols
|
||||||
|
cython_debug/
|
||||||
|
|
||||||
|
# PyCharm
|
||||||
|
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
||||||
|
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
||||||
|
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
||||||
|
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
||||||
|
#.idea/
|
||||||
|
98
main.py
98
main.py
@ -1,13 +1,23 @@
|
|||||||
from skimage.io import imread
|
import sys
|
||||||
|
import argparse
|
||||||
|
from skimage.io import imread, imsave
|
||||||
from scipy.stats import moment
|
from scipy.stats import moment
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
from numpy import array, all, uint8
|
||||||
|
from rich.console import Console
|
||||||
|
|
||||||
|
console = Console()
|
||||||
|
|
||||||
|
def save_image(data, name, resolution):
|
||||||
|
final_image = data.reshape(resolution)
|
||||||
|
imsave(f"{name}.png", final_image)
|
||||||
|
|
||||||
def find_nearest_point(data, target):
|
def find_nearest_point(data, target):
|
||||||
idx = np.array([calc_distance(p, target) for p in data]).argmin()
|
idx = np.array([calc_distance(p, target) for p in data]).argmin()
|
||||||
return data[idx]
|
return data[idx]
|
||||||
|
|
||||||
|
|
||||||
def centeroidnp(arr):
|
def centroidnp(arr):
|
||||||
length = arr.shape[0]
|
length = arr.shape[0]
|
||||||
sum_x = np.sum(arr[:, 0])
|
sum_x = np.sum(arr[:, 0])
|
||||||
sum_y = np.sum(arr[:, 1])
|
sum_y = np.sum(arr[:, 1])
|
||||||
@ -20,51 +30,99 @@ def calc_distance(x, y):
|
|||||||
|
|
||||||
|
|
||||||
def k_means(data, count):
|
def k_means(data, count):
|
||||||
# Pick n random points to start
|
# Pick n random points to startA
|
||||||
index = np.random.choice(data.shape[0], count, replace=False)
|
idx_data = np.unique(data, axis=0)
|
||||||
means = data[index]
|
index = np.random.choice(idx_data.shape[0], count, replace=False)
|
||||||
|
means = idx_data[index]
|
||||||
data = np.delete(data, index, axis=0)
|
data = np.delete(data, index, axis=0)
|
||||||
|
|
||||||
distance_delta = 100
|
distance_delta = 100
|
||||||
means_distance = 0
|
means_distance = 0
|
||||||
while distance_delta > 0.1:
|
clusters = {}
|
||||||
print(f"new iteration, distance moved: {distance_delta}")
|
with console.status("[bold blue] Finding means...") as status:
|
||||||
|
while distance_delta > 5:
|
||||||
# Initialize cluster map
|
# Initialize cluster map
|
||||||
clusters = {}
|
clusters = {}
|
||||||
for m in means:
|
for m in means:
|
||||||
clusters[str(m)] = []
|
clusters[repr(m)] = []
|
||||||
|
|
||||||
# Find closest mean to each point
|
# Find closest mean to each point
|
||||||
for point in data:
|
for point in data:
|
||||||
closest = find_nearest_point(means, point)
|
closest = find_nearest_point(means, point)
|
||||||
clusters[str(closest)].append(point)
|
clusters[repr(closest)].append(point)
|
||||||
|
|
||||||
# Find the centeroid of each mean
|
# Find the centroid of each mean
|
||||||
new_means = []
|
new_means = []
|
||||||
previous_distance = means_distance
|
previous_distance = means_distance
|
||||||
means_distance = 0
|
means_distance = 0
|
||||||
for mean in means:
|
for mean in means:
|
||||||
mean_key = str(mean)
|
mean_key = repr(mean)
|
||||||
# Clean up the results a little bit
|
# Clean up the results a little bit
|
||||||
clusters[mean_key] = np.stack(clusters[str(mean)])
|
clusters[mean_key] = np.stack(clusters[mean_key])
|
||||||
# Calculate new mean
|
# Calculate new mean
|
||||||
raw_mean = centeroidnp(clusters[mean_key])
|
raw_mean = centroidnp(clusters[mean_key])
|
||||||
nearest_mean_point = find_nearest_point(data, raw_mean)
|
nearest_mean_point = find_nearest_point(data, raw_mean)
|
||||||
means_distance = means_distance + calc_distance(mean, nearest_mean_point)
|
means_distance = means_distance + calc_distance(mean, nearest_mean_point)
|
||||||
new_means.append(nearest_mean_point)
|
new_means.append(nearest_mean_point)
|
||||||
means_distance = means_distance / float(count)
|
means_distance = means_distance / float(count)
|
||||||
distance_delta = abs(previous_distance - means_distance)
|
distance_delta = abs(previous_distance - means_distance)
|
||||||
means = np.stack(new_means)
|
means = np.stack(new_means)
|
||||||
print(means)
|
|
||||||
|
return means
|
||||||
|
|
||||||
|
|
||||||
|
im = imread("zarin.jpg")
|
||||||
|
|
||||||
|
|
||||||
im = imread("image.png")
|
|
||||||
starting_resolution = im.shape
|
starting_resolution = im.shape
|
||||||
|
console.log("[blue] Starting with image of size: ", starting_resolution)
|
||||||
raw_pixels = im.reshape(-1, 3)
|
raw_pixels = im.reshape(-1, 3)
|
||||||
|
raw_shape = raw_pixels.shape
|
||||||
|
|
||||||
colors = [[45, 85, 255], [0, 181, 204], [243, 225, 107]]
|
colors = np.array([np.array([0,43,54]),
|
||||||
|
np.array([7,54,66]),
|
||||||
|
np.array([88,110,117]),
|
||||||
|
np.array([101,123,131]),
|
||||||
|
np.array([131,148,150]),
|
||||||
|
np.array([147,161,161]),
|
||||||
|
np.array([238,232,213]),
|
||||||
|
np.array([253,246,227]),
|
||||||
|
np.array([181,137,0]),
|
||||||
|
np.array([203,75,22]),
|
||||||
|
np.array([220,50,47]),
|
||||||
|
np.array([211,54,130]),
|
||||||
|
np.array([108,113,196]),
|
||||||
|
np.array([38,139,210]),
|
||||||
|
np.array([42,161,152]),
|
||||||
|
np.array([133,153,0])])
|
||||||
|
|
||||||
k_means(raw_pixels, len(colors))
|
def main():
|
||||||
|
# Find the colors that most represent the image
|
||||||
|
color_means = k_means(raw_pixels, len(colors))
|
||||||
|
console.log("[green] Found cluster centers: ", color_means)
|
||||||
|
|
||||||
|
# Remap image to the center points
|
||||||
|
console.log("[purple] Re-mapping image")
|
||||||
|
output_raw = np.zeros_like(raw_pixels)
|
||||||
|
for i in range(len(raw_pixels)):
|
||||||
|
output_raw[i] = find_nearest_point(color_means, raw_pixels[i])
|
||||||
|
|
||||||
|
# Map means to the colors provided by the user
|
||||||
|
pairs = []
|
||||||
|
tmp_means = color_means
|
||||||
|
for color in colors:
|
||||||
|
m = find_nearest_point(tmp_means, color)
|
||||||
|
pairs.append((m, color))
|
||||||
|
idxs, = np.where(np.all(tmp_means == m, axis=1))
|
||||||
|
tmp_means = np.delete(tmp_means, idxs, axis=0)
|
||||||
|
|
||||||
|
# Recolor the image
|
||||||
|
for pair in pairs:
|
||||||
|
idxs, = np.where(np.all(output_raw == pair[0], axis=1))
|
||||||
|
output_raw[idxs] = pair[1]
|
||||||
|
save_image(output_raw, "final", starting_resolution)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
||||||
|
pass
|
||||||
|
|
||||||
|
sys.exit(0)
|
||||||
|
Loading…
Reference in New Issue
Block a user