import sys import argparse from skimage.io import imread, imsave from scipy.stats import moment import numpy as np from numpy import array, all, uint8 from rich.console import Console console = Console() def save_image(data, name, resolution): final_image = data.reshape(resolution) imsave(f"{name}.png", final_image) def find_nearest_point(data, target): idx = np.array([calc_distance(p, target) for p in data]).argmin() return data[idx] def centroidnp(arr): length = arr.shape[0] sum_x = np.sum(arr[:, 0]) sum_y = np.sum(arr[:, 1]) sum_z = np.sum(arr[:, 2]) return sum_x/length, sum_y/length, sum_z/length def calc_distance(x, y): return np.absolute(np.linalg.norm(x - y)) def k_means(data, count): # Pick n random points to startA idx_data = np.unique(data, axis=0) index = np.random.choice(idx_data.shape[0], count, replace=False) means = idx_data[index] data = np.delete(data, index, axis=0) distance_delta = 100 means_distance = 0 clusters = {} with console.status("[bold blue] Finding means...") as status: while distance_delta > 5: # Initialize cluster map clusters = {} for m in means: clusters[repr(m)] = [] # Find closest mean to each point for point in data: closest = find_nearest_point(means, point) clusters[repr(closest)].append(point) # Find the centroid of each mean new_means = [] previous_distance = means_distance means_distance = 0 for mean in means: mean_key = repr(mean) # Clean up the results a little bit clusters[mean_key] = np.stack(clusters[mean_key]) # Calculate new mean raw_mean = centroidnp(clusters[mean_key]) nearest_mean_point = find_nearest_point(data, raw_mean) means_distance = means_distance + calc_distance(mean, nearest_mean_point) new_means.append(nearest_mean_point) means_distance = means_distance / float(count) distance_delta = abs(previous_distance - means_distance) means = np.stack(new_means) return means im = imread("zarin.jpg") starting_resolution = im.shape console.log("[blue] Starting with image of size: ", starting_resolution) raw_pixels = im.reshape(-1, 3) raw_shape = raw_pixels.shape colors = np.array([np.array([0,43,54]), np.array([7,54,66]), np.array([88,110,117]), np.array([101,123,131]), np.array([131,148,150]), np.array([147,161,161]), np.array([238,232,213]), np.array([253,246,227]), np.array([181,137,0]), np.array([203,75,22]), np.array([220,50,47]), np.array([211,54,130]), np.array([108,113,196]), np.array([38,139,210]), np.array([42,161,152]), np.array([133,153,0])]) def main(): # Find the colors that most represent the image color_means = k_means(raw_pixels, len(colors)) console.log("[green] Found cluster centers: ", color_means) # Remap image to the center points console.log("[purple] Re-mapping image") output_raw = np.zeros_like(raw_pixels) for i in range(len(raw_pixels)): output_raw[i] = find_nearest_point(color_means, raw_pixels[i]) # Map means to the colors provided by the user pairs = [] tmp_means = color_means for color in colors: m = find_nearest_point(tmp_means, color) pairs.append((m, color)) idxs, = np.where(np.all(tmp_means == m, axis=1)) tmp_means = np.delete(tmp_means, idxs, axis=0) # Recolor the image for pair in pairs: idxs, = np.where(np.all(output_raw == pair[0], axis=1)) output_raw[idxs] = pair[1] save_image(output_raw, "final", starting_resolution) if __name__ == "__main__": main() pass sys.exit(0)