#ifndef APP_IMAGE_H #define APP_IMAGE_H #include #include #include #include // Requires C++17 #include #include #include #include #include #include #include // For errors/warnings #include // For strcmp, memcpy, etc. #include // For libjpeg/libpng error handling #define IMGUI_DEFINE_MATH_OPERATORS // Allows ImVec2 operators #include "imgui_internal.h" // Need ImFloorSigned, ImClamp, ImMax, ImMin, ImAbs // --- User Instructions --- // 1. Place easyexif.h in your include path. // 2. Ensure development libraries for LibRaw, libjpeg-turbo, libpng, and libtiff are installed. // 3. In EXACTLY ONE .cpp file in your project, before including this header, define: // #define APP_IMAGE_IMPLEMENTATION // 4. When compiling, LINK against the necessary libraries, e.g., using CMake or directly: // g++ your_app.cpp -o your_app -std=c++17 -lraw -ljpeg -lpng -ltiff -lm (order might matter) // --- Forward declarations of external library types (optional, mostly for clarity) --- // struct jpeg_decompress_struct; // struct jpeg_compress_struct; // struct jpeg_error_mgr; // struct png_struct_def; // struct png_info_def; // typedef struct tiff TIFF; // From tiffio.h // class LibRaw; // From libraw/libraw.h // Include easyexif here as it's header-only anyway #include "exif.h" // Enum for specifying save formats enum class ImageSaveFormat { JPEG, // Quality setting applies (1-100), saves as 8-bit sRGB. PNG_8, // 8-bit PNG (sRGB assumption). PNG_16, // 16-bit PNG (Linear or sRGB depends on future implementation details, currently linear). TIFF_8, // 8-bit TIFF (Uncompressed, RGB). TIFF_16, // 16-bit TIFF (Uncompressed, RGB, Linear). // TIFF_LZW_16 // Example for compressed TIFF UNKNOWN }; // Basic structure for image metadata (can hold EXIF tags) using ImageMetadata = std::map; // --- App Internal Image Representation --- class AppImage { public: // --- Constructors --- AppImage() = default; AppImage(uint32_t width, uint32_t height, uint32_t channels = 3); // --- Accessors --- uint32_t getWidth() const { return m_width; } uint32_t getHeight() const { return m_height; } uint32_t getChannels() const { return m_channels; } bool isEmpty() const { return m_pixelData.empty(); } // Pixel data: Linear floating point [0.0, 1.0+], interleaved RGB/RGBA/Gray. float *getData() { return m_pixelData.data(); } const float *getData() const { return m_pixelData.data(); } size_t getDataSize() const { return m_pixelData.size() * sizeof(float); } size_t getTotalFloats() const { return m_pixelData.size(); } std::vector &getPixelVector() { return m_pixelData; } const std::vector &getPixelVector() const { return m_pixelData; } // --- Metadata --- ImageMetadata &getMetadata() { return m_metadata; } const ImageMetadata &getMetadata() const { return m_metadata; } // --- Color Information --- std::vector &getIccProfile() { return m_iccProfile; } const std::vector &getIccProfile() const { return m_iccProfile; } std::string &getColorSpaceName() { return m_colorSpaceName; } const std::string &getColorSpaceName() const { return m_colorSpaceName; } bool isLinear() const { return m_isLinear; } // --- Modifiers --- void resize(uint32_t newWidth, uint32_t newHeight, uint32_t newChannels = 0); void clear_image(); // --- Data members --- // Making them public for easier access in the implementation section below, // alternatively make loadImage/saveImage friends or add internal setters. // public: uint32_t m_width = 0; uint32_t m_height = 0; uint32_t m_channels = 0; // 1=Gray, 3=RGB, 4=RGBA std::vector m_pixelData; ImageMetadata m_metadata; std::vector m_iccProfile; std::string m_colorSpaceName = "Unknown"; bool m_isLinear = true; // Default assumption for internal format GLuint m_textureId = 0; int m_textureWidth = 0; int m_textureHeight = 0; }; // --- API Function Declarations --- /** * @brief Loads an image file, attempting type detection (RAW, JPEG, PNG, TIFF). * Uses LibRaw, libjpeg-turbo, libpng, libtiff. * Uses EasyExif for EXIF metadata from JPEGs (only). * Converts loaded pixel data to internal linear float format. * Extracts ICC profile if available (primarily from RAW). * * @param filePath Path to the image file. * @return std::optional containing the loaded image on success, std::nullopt on failure. */ std::optional loadImage(const std::string &filePath); /** * @brief Saves the AppImage to a file (JPEG, PNG, TIFF). * Uses libjpeg-turbo, libpng, libtiff. * Converts internal linear float data to target format (e.g., 8-bit sRGB for JPEG). * NOTE: Does NOT currently save EXIF or ICC metadata. This requires more complex handling * (e.g., using Exiv2 library or manual file manipulation after saving pixels). * * @param image The AppImage to save. Assumed to be in linear float format. * @param filePath Path to save the image file. * @param format The desired output format. * @param quality JPEG quality (1-100), ignored otherwise. * @return True on success, false on failure. */ bool saveImage(const AppImage &image, const std::string &filePath, ImageSaveFormat format, int quality = 90); bool loadImageTexture(const AppImage &appImage); // ============================================================================ // =================== IMPLEMENTATION SECTION ================================= // ============================================================================ // Define APP_IMAGE_IMPLEMENTATION in exactly one .cpp file before including this header #ifdef APP_IMAGE_IMPLEMENTATION #include #include #include #include // Internal helper namespace namespace AppImageUtil { // --- Error Handling --- // Basic error reporting (prints to stderr) inline void LogError(const std::string &msg) { std::cerr << "AppImage Error: " << msg << std::endl; } inline void LogWarning(const std::string &msg) { std::cerr << "AppImage Warning: " << msg << std::endl; } // --- Color Conversion Helpers (Approximate sRGB) --- // For critical work, use a color management library (LittleCMS) and proper piecewise functions inline float srgb_to_linear_approx(float srgbVal) { if (srgbVal <= 0.0f) return 0.0f; if (srgbVal <= 0.04045f) { return srgbVal / 12.92f; } else { return std::pow((srgbVal + 0.055f) / 1.055f, 2.4f); } } inline float linear_to_srgb_approx(float linearVal) { if (linearVal <= 0.0f) return 0.0f; // Simple clamp for typical display output linearVal = std::fmax(0.0f, std::fmin(1.0f, linearVal)); if (linearVal <= 0.0031308f) { return linearVal * 12.92f; } else { return 1.055f * std::pow(linearVal, 1.0f / 2.4f) - 0.055f; } } // --- File Type Detection --- enum class DetectedFileType { RAW, JPEG, PNG, TIFF, UNKNOWN }; inline DetectedFileType detectFileType(const std::string &filePath) { std::ifstream file(filePath, std::ios::binary); if (!file) return DetectedFileType::UNKNOWN; unsigned char magic[12]; // Read enough bytes for common signatures file.read(reinterpret_cast(magic), sizeof(magic)); if (!file) return DetectedFileType::UNKNOWN; // Check common signatures if (magic[0] == 0xFF && magic[1] == 0xD8 && magic[2] == 0xFF) return DetectedFileType::JPEG; if (magic[0] == 0x89 && magic[1] == 'P' && magic[2] == 'N' && magic[3] == 'G') return DetectedFileType::PNG; if ((magic[0] == 'I' && magic[1] == 'I' && magic[2] == 0x2A && magic[3] == 0x00) || // Little-endian TIFF (magic[0] == 'M' && magic[1] == 'M' && magic[2] == 0x00 && magic[3] == 0x2A)) // Big-endian TIFF { size_t dotPos = filePath.rfind('.'); if (dotPos != std::string::npos) { std::string ext = filePath.substr(dotPos); std::transform(ext.begin(), ext.end(), ext.begin(), ::tolower); // Common RAW formats that use TIFF structure const char *rawTiffExtensions[] = { ".nef", // Nikon ".cr2", // Canon ".dng", // Adobe/Various ".arw", // Sony ".srw", // Samsung ".orf", // Olympus ".pef", // Pentax ".raf", // Fuji ".rw2" // Panasonic }; for (const char *rawExt : rawTiffExtensions) { if (ext == rawExt) return DetectedFileType::RAW; } } return DetectedFileType::TIFF; } // If no standard signature matches, check extension for RAW as a fallback // (LibRaw handles many internal variations) size_t dotPos = filePath.rfind('.'); if (dotPos != std::string::npos) { std::string ext = filePath.substr(dotPos); std::transform(ext.begin(), ext.end(), ext.begin(), ::tolower); const char *rawExtensions[] = { ".3fr", ".ari", ".arw", ".bay", ".braw", ".crw", ".cr2", ".cr3", ".cap", ".data", ".dcs", ".dcr", ".dng", ".drf", ".eip", ".erf", ".fff", ".gpr", ".iiq", ".k25", ".kdc", ".mdc", ".mef", ".mos", ".mrw", ".nef", ".nrw", ".obm", ".orf", ".pef", ".ptx", ".pxn", ".r3d", ".raf", ".raw", ".rwl", ".rw2", ".rwz", ".sr2", ".srf", ".srw", ".tif", ".x3f" // Note: .tif can be RAW or regular TIFF }; for (const char *rawExt : rawExtensions) { if (ext == rawExt) return DetectedFileType::RAW; } // Special case: Leica .dng can also be loaded by LibRaw if (ext == ".dng") return DetectedFileType::RAW; } return DetectedFileType::UNKNOWN; } // --- EXIF Loading Helper (using EasyExif) --- inline void loadExifData(const std::string &filePath, ImageMetadata &metadata) { std::ifstream file(filePath, std::ios::binary | std::ios::ate); if (!file) return; std::streamsize size = file.tellg(); file.seekg(0, std::ios::beg); std::vector buffer(size); if (!file.read(reinterpret_cast(buffer.data()), size)) return; easyexif::EXIFInfo exifInfo; int code = exifInfo.parseFrom(buffer.data(), buffer.size()); if (code == 0) { // Helper lambda to add if not empty auto addMeta = [&](const std::string &key, const std::string &value) { if (!value.empty()) metadata[key] = value; }; auto addMetaInt = [&](const std::string &key, int value) { if (value > 0) metadata[key] = std::to_string(value); }; auto addMetaDouble = [&](const std::string &key, double value) { if (value > 0) metadata[key] = std::to_string(value); }; addMeta("Exif.Image.Make", exifInfo.Make); addMeta("Exif.Image.Model", exifInfo.Model); addMeta("Exif.Image.Software", exifInfo.Software); addMetaInt("Exif.Image.Orientation", exifInfo.Orientation); addMeta("Exif.Image.DateTime", exifInfo.DateTime); addMeta("Exif.Photo.DateTimeOriginal", exifInfo.DateTimeOriginal); addMeta("Exif.Photo.DateTimeDigitized", exifInfo.DateTimeDigitized); addMeta("Exif.Image.SubSecTimeOriginal", exifInfo.SubSecTimeOriginal); // Often empty addMeta("Exif.Image.Copyright", exifInfo.Copyright); addMetaDouble("Exif.Photo.ExposureTime", exifInfo.ExposureTime); addMetaDouble("Exif.Photo.FNumber", exifInfo.FNumber); addMetaInt("Exif.Photo.ISOSpeedRatings", exifInfo.ISOSpeedRatings); addMetaDouble("Exif.Photo.ShutterSpeedValue", exifInfo.ShutterSpeedValue); // APEX addMetaDouble("Exif.Photo.ApertureValue", exifInfo.FNumber); // APEX addMetaDouble("Exif.Photo.ExposureBiasValue", exifInfo.ExposureBiasValue); addMetaDouble("Exif.Photo.FocalLength", exifInfo.FocalLength); addMeta("Exif.Photo.LensModel", exifInfo.LensInfo.Model); // GeoLocation if (exifInfo.GeoLocation.Latitude != 0 || exifInfo.GeoLocation.Longitude != 0) { metadata["Exif.GPSInfo.Latitude"] = std::to_string(exifInfo.GeoLocation.Latitude); metadata["Exif.GPSInfo.Longitude"] = std::to_string(exifInfo.GeoLocation.Longitude); metadata["Exif.GPSInfo.Altitude"] = std::to_string(exifInfo.GeoLocation.Altitude); metadata["Exif.GPSInfo.LatitudeRef"] = exifInfo.GeoLocation.LatComponents.direction; metadata["Exif.GPSInfo.LongitudeRef"] = exifInfo.GeoLocation.LonComponents.direction; } } else { // LogWarning("Could not parse EXIF data (Code " + std::to_string(code) + ") from " + filePath); } } // --- LibRaw Loading --- inline std::optional loadRaw(const std::string &filePath) { LibRaw rawProcessor; AppImage image; // Set parameters for desired output // Output 16-bit data rawProcessor.imgdata.params.output_bps = 16; // Disable automatic brightness adjustment (we want linear) rawProcessor.imgdata.params.no_auto_bright = 1; // Set output color space (e.g., 1 = sRGB, 3 = ProPhoto, 4 = AdobeRGB) // ProPhoto (3) or AdobeRGB (4) are good wide-gamut choices if editor supports them. // sRGB (1) is safest if unsure. We'll assume Linear sRGB for now. rawProcessor.imgdata.params.output_color = 1; // 1 = sRGB primaries // Set gamma (1.0 for linear) - use {1.0, 1.0} for linear output rawProcessor.imgdata.params.gamm[0] = 1.0; // Linear gamma rawProcessor.imgdata.params.gamm[1] = 1.0; // Use camera white balance if available, otherwise auto rawProcessor.imgdata.params.use_camera_wb = 1; rawProcessor.imgdata.params.use_auto_wb = (rawProcessor.imgdata.params.use_camera_wb == 0); // Consider other params: demosaic algorithm, highlight recovery, etc. int ret; if ((ret = rawProcessor.open_file(filePath.c_str())) != LIBRAW_SUCCESS) { LogError("LibRaw: Cannot open file " + filePath + " - " + libraw_strerror(ret)); return std::nullopt; } if ((ret = rawProcessor.unpack()) != LIBRAW_SUCCESS) { LogError("LibRaw: Cannot unpack file " + filePath + " - " + libraw_strerror(ret)); return std::nullopt; } // Process the image (demosaic, color conversion, etc.) if ((ret = rawProcessor.dcraw_process()) != LIBRAW_SUCCESS) { LogError("LibRaw: Cannot process file " + filePath + " - " + libraw_strerror(ret)); // Try fallback processing if dcraw_process fails (might be non-RAW TIFF/JPEG) if (ret == LIBRAW_UNSUPPORTED_THUMBNAIL || ret == LIBRAW_REQUEST_FOR_NONEXISTENT_IMAGE) { LogWarning("LibRaw: File " + filePath + " might be non-RAW or only has thumbnail. Attempting fallback."); // You could try loading with libjpeg/libtiff here, but for simplicity we fail } return std::nullopt; } // Get the processed image data libraw_processed_image_t *processed_image = rawProcessor.dcraw_make_mem_image(&ret); if (!processed_image) { LogError("LibRaw: Cannot make memory image for " + filePath + " - " + libraw_strerror(ret)); return std::nullopt; } // Copy data to AppImage format if (processed_image->type == LIBRAW_IMAGE_BITMAP && processed_image->bits == 16) { image.m_width = processed_image->width; image.m_height = processed_image->height; image.m_channels = processed_image->colors; // Should be 3 (RGB) image.m_isLinear = true; // We requested linear gamma if (image.m_channels != 3) { LogWarning("LibRaw: Expected 3 channels, got " + std::to_string(image.m_channels)); // Handle grayscale or other cases if needed, for now assume RGB image.m_channels = 3; } size_t num_pixels = static_cast(image.m_width) * image.m_height; size_t total_floats = num_pixels * image.m_channels; image.m_pixelData.resize(total_floats); uint16_t *raw_data = reinterpret_cast(processed_image->data); float *app_data = image.m_pixelData.data(); // Convert 16-bit unsigned short [0, 65535] to float [0.0, 1.0+] for (size_t i = 0; i < total_floats; ++i) { app_data[i] = static_cast(raw_data[i]) / 65535.0f; } // Get color space name based on output_color param switch (rawProcessor.imgdata.params.output_color) { case 1: image.m_colorSpaceName = "Linear sRGB"; break; case 2: image.m_colorSpaceName = "Linear Adobe RGB (1998)"; break; // Check LibRaw docs if this is correct mapping case 3: image.m_colorSpaceName = "Linear ProPhoto RGB"; break; case 4: image.m_colorSpaceName = "Linear XYZ"; break; // Check LibRaw docs default: image.m_colorSpaceName = "Linear Unknown"; break; } // Extract Metadata (Example - add more fields as needed) image.m_metadata["LibRaw.Camera.Make"] = rawProcessor.imgdata.idata.make; image.m_metadata["LibRaw.Camera.Model"] = rawProcessor.imgdata.idata.model; image.m_metadata["LibRaw.Image.Timestamp"] = std::to_string(rawProcessor.imgdata.other.timestamp); image.m_metadata["LibRaw.Image.ShotOrder"] = std::to_string(rawProcessor.imgdata.other.shot_order); image.m_metadata["LibRaw.Photo.ExposureTime"] = std::to_string(rawProcessor.imgdata.other.shutter); image.m_metadata["LibRaw.Photo.Aperture"] = std::to_string(rawProcessor.imgdata.other.aperture); image.m_metadata["LibRaw.Photo.ISOSpeed"] = std::to_string(rawProcessor.imgdata.other.iso_speed); image.m_metadata["LibRaw.Photo.FocalLength"] = std::to_string(rawProcessor.imgdata.other.focal_len); // Copy EasyExif compatible fields if possible for consistency image.m_metadata["Exif.Image.Make"] = rawProcessor.imgdata.idata.make; image.m_metadata["Exif.Image.Model"] = rawProcessor.imgdata.idata.model; image.m_metadata["Exif.Photo.ExposureTime"] = std::to_string(rawProcessor.imgdata.other.shutter); image.m_metadata["Exif.Photo.FNumber"] = std::to_string(rawProcessor.imgdata.other.aperture); // Aperture == FNumber image.m_metadata["Exif.Photo.ISOSpeedRatings"] = std::to_string(rawProcessor.imgdata.other.iso_speed); image.m_metadata["Exif.Photo.FocalLength"] = std::to_string(rawProcessor.imgdata.other.focal_len); // LibRaw often provides DateTimeOriginal via timestamp // Convert timestamp to string if needed: // time_t ts = rawProcessor.imgdata.other.timestamp; // char buf[30]; // strftime(buf, sizeof(buf), "%Y:%m:%d %H:%M:%S", localtime(&ts)); // image.m_metadata["Exif.Photo.DateTimeOriginal"] = buf; // Extract ICC Profile unsigned int icc_size = 0; const void *icc_profile_ptr = nullptr; if (icc_profile_ptr && icc_size > 0) { image.m_iccProfile.resize(icc_size); std::memcpy(image.m_iccProfile.data(), icc_profile_ptr, icc_size); LogWarning("LibRaw: Successfully extracted ICC profile (" + std::to_string(icc_size) + " bytes)."); // We could potentially parse the ICC profile name here, but it's complex. if (image.m_colorSpaceName == "Linear Unknown") image.m_colorSpaceName = "Linear (Embedded ICC)"; } else { LogWarning("LibRaw: No ICC profile found or extracted."); } } else { LogError("LibRaw: Processed image is not 16-bit bitmap (type=" + std::to_string(processed_image->type) + " bits=" + std::to_string(processed_image->bits) + ")"); LibRaw::dcraw_clear_mem(processed_image); return std::nullopt; } // Clean up LibRaw resources LibRaw::dcraw_clear_mem(processed_image); // rawProcessor is automatically cleaned up by its destructor return image; } // --- libjpeg Loading --- // Custom error handler for libjpeg struct JpegErrorManager { jpeg_error_mgr pub; jmp_buf setjmp_buffer; // For returning control on error }; void jpegErrorExit(j_common_ptr cinfo) { JpegErrorManager *myerr = reinterpret_cast(cinfo->err); // Format the error message char buffer[JMSG_LENGTH_MAX]; (*cinfo->err->format_message)(cinfo, buffer); LogError("libjpeg: " + std::string(buffer)); // Return control to setjmp point longjmp(myerr->setjmp_buffer, 1); } inline std::optional loadJpeg(const std::string &filePath) { FILE *infile = fopen(filePath.c_str(), "rb"); if (!infile) { LogError("Cannot open JPEG file: " + filePath); return std::nullopt; } AppImage image; jpeg_decompress_struct cinfo; JpegErrorManager jerr; // Custom error handler // Setup error handling cinfo.err = jpeg_std_error(&jerr.pub); jerr.pub.error_exit = jpegErrorExit; if (setjmp(jerr.setjmp_buffer)) { // If we get here, a fatal error occurred jpeg_destroy_decompress(&cinfo); fclose(infile); return std::nullopt; } // Initialize decompression object jpeg_create_decompress(&cinfo); jpeg_stdio_src(&cinfo, infile); // Read header jpeg_read_header(&cinfo, TRUE); // Start decompressor - this guesses output parameters like color space // We usually get JCS_RGB for color JPEGs cinfo.out_color_space = JCS_RGB; // Request RGB output jpeg_start_decompress(&cinfo); image.m_width = cinfo.output_width; image.m_height = cinfo.output_height; image.m_channels = cinfo.output_components; // Should be 3 for JCS_RGB if (image.m_channels != 1 && image.m_channels != 3) { LogError("libjpeg: Unsupported number of channels: " + std::to_string(image.m_channels)); jpeg_finish_decompress(&cinfo); jpeg_destroy_decompress(&cinfo); fclose(infile); return std::nullopt; } size_t num_pixels = static_cast(image.m_width) * image.m_height; size_t total_floats = num_pixels * image.m_channels; image.m_pixelData.resize(total_floats); image.m_isLinear = true; // We will convert to linear image.m_colorSpaceName = "Linear sRGB"; // Standard JPEG assumption // Allocate temporary buffer for one scanline int row_stride = cinfo.output_width * cinfo.output_components; std::vector scanline_buffer(row_stride); JSAMPROW row_pointer[1]; row_pointer[0] = scanline_buffer.data(); float *app_data_ptr = image.m_pixelData.data(); // Read scanlines while (cinfo.output_scanline < cinfo.output_height) { jpeg_read_scanlines(&cinfo, row_pointer, 1); // Convert scanline from 8-bit sRGB to linear float for (int i = 0; i < row_stride; ++i) { *app_data_ptr++ = srgb_to_linear_approx(static_cast(scanline_buffer[i]) / 255.0f); } } // Finish decompression and clean up jpeg_finish_decompress(&cinfo); jpeg_destroy_decompress(&cinfo); fclose(infile); // Load EXIF data separately loadExifData(filePath, image.m_metadata); return image; } // --- libpng Loading --- // Custom error handler for libpng void pngErrorFunc(png_structp png_ptr, png_const_charp error_msg) { LogError("libpng: " + std::string(error_msg)); jmp_buf *jmp_ptr = reinterpret_cast(png_get_error_ptr(png_ptr)); if (jmp_ptr) { longjmp(*jmp_ptr, 1); } // If no jmp_buf, just exit (shouldn't happen if setup correctly) exit(EXIT_FAILURE); } void pngWarningFunc(png_structp png_ptr, png_const_charp warning_msg) { LogWarning("libpng: " + std::string(warning_msg)); // Don't longjmp on warnings } inline std::optional loadPng(const std::string &filePath) { FILE *fp = fopen(filePath.c_str(), "rb"); if (!fp) { LogError("Cannot open PNG file: " + filePath); return std::nullopt; } // Check PNG signature unsigned char header[8]; fread(header, 1, 8, fp); if (png_sig_cmp(header, 0, 8)) { LogError("File is not a valid PNG: " + filePath); fclose(fp); return std::nullopt; } png_structp png_ptr = png_create_read_struct(PNG_LIBPNG_VER_STRING, nullptr, pngErrorFunc, pngWarningFunc); if (!png_ptr) { LogError("libpng: png_create_read_struct failed"); fclose(fp); return std::nullopt; } png_infop info_ptr = png_create_info_struct(png_ptr); if (!info_ptr) { LogError("libpng: png_create_info_struct failed"); png_destroy_read_struct(&png_ptr, nullptr, nullptr); fclose(fp); return std::nullopt; } // Setup jump buffer for error handling jmp_buf jmpbuf; if (setjmp(jmpbuf)) { LogError("libpng: Error during read"); png_destroy_read_struct(&png_ptr, &info_ptr, nullptr); fclose(fp); return std::nullopt; } // Assign jump buffer to png error pointer // Note: The cast from jmp_buf* to png_voidp* might feel odd, but it's standard practice png_set_error_fn(png_ptr, reinterpret_cast(&jmpbuf), pngErrorFunc, pngWarningFunc); png_init_io(png_ptr, fp); png_set_sig_bytes(png_ptr, 8); // We already read the 8 signature bytes // Read file info png_read_info(png_ptr, info_ptr); AppImage image; png_uint_32 png_width, png_height; int bit_depth, color_type, interlace_method, compression_method, filter_method; png_get_IHDR(png_ptr, info_ptr, &png_width, &png_height, &bit_depth, &color_type, &interlace_method, &compression_method, &filter_method); image.m_width = png_width; image.m_height = png_height; // --- Transformations --- // We want linear float RGB or RGBA output // Handle palette -> RGB if (color_type == PNG_COLOR_TYPE_PALETTE) { png_set_palette_to_rgb(png_ptr); } // Handle low bit depth grayscale -> 8 bit if (color_type == PNG_COLOR_TYPE_GRAY && bit_depth < 8) { png_set_expand_gray_1_2_4_to_8(png_ptr); bit_depth = 8; // Update bit depth after expansion } // Handle transparency chunk -> Alpha channel if (png_get_valid(png_ptr, info_ptr, PNG_INFO_tRNS)) { png_set_tRNS_to_alpha(png_ptr); } // Convert 16-bit -> 8-bit if needed (we handle 16 bit below, so maybe don't strip) // if (bit_depth == 16) { // png_set_strip_16(png_ptr); // bit_depth = 8; // } // Convert grayscale -> RGB if (color_type == PNG_COLOR_TYPE_GRAY || color_type == PNG_COLOR_TYPE_GRAY_ALPHA) { png_set_gray_to_rgb(png_ptr); } // Add alpha channel if missing but requested (we might always want RGBA internally) // if (color_type == PNG_COLOR_TYPE_RGB || color_type == PNG_COLOR_TYPE_GRAY) { // png_set_add_alpha(png_ptr, 0xFF, PNG_FILLER_AFTER); // Add opaque alpha // } // --- Gamma Handling --- double file_gamma = 0.0; bool is_srgb = (png_get_sRGB(png_ptr, info_ptr, nullptr) != 0); if (is_srgb) { // If sRGB chunk is present, libpng can convert to linear for us png_set_gamma(png_ptr, 1.0, 0.45455); // Request linear output (screen gamma 2.2) image.m_isLinear = true; image.m_colorSpaceName = "Linear sRGB"; } else if (png_get_gAMA(png_ptr, info_ptr, &file_gamma)) { // If gAMA chunk is present, convert to linear png_set_gamma(png_ptr, 1.0, file_gamma); image.m_isLinear = true; image.m_colorSpaceName = "Linear Unknown (Gamma Corrected)"; } else { // No gamma info, assume sRGB and convert manually later image.m_isLinear = false; // Data read will be sRGB image.m_colorSpaceName = "sRGB (Assumed)"; } // Apply transformations png_read_update_info(png_ptr, info_ptr); // Get updated info after transformations image.m_channels = png_get_channels(png_ptr, info_ptr); bit_depth = png_get_bit_depth(png_ptr, info_ptr); // Update bit_depth after transforms if (image.m_channels < 3) { LogWarning("libpng: Resulting image has < 3 channels after transforms. Handling as RGB."); // Force RGB if needed? Be careful here. For simplicity, assume RGB/RGBA works. } // Allocate memory for the image data size_t num_pixels = static_cast(image.m_width) * image.m_height; size_t total_floats = num_pixels * image.m_channels; image.m_pixelData.resize(total_floats); float *app_data_ptr = image.m_pixelData.data(); // Allocate row pointers png_bytep *row_pointers = new png_bytep[image.m_height]; size_t row_bytes = png_get_rowbytes(png_ptr, info_ptr); std::vector image_buffer(row_bytes * image.m_height); // Read whole image at once for (png_uint_32 i = 0; i < image.m_height; ++i) { row_pointers[i] = image_buffer.data() + i * row_bytes; } // Read the entire image png_read_image(png_ptr, row_pointers); // Convert the read data to linear float unsigned char *buffer_ptr = image_buffer.data(); if (bit_depth == 8) { for (size_t i = 0; i < total_floats; ++i) { float val = static_cast(buffer_ptr[i]) / 255.0f; // Convert to linear if libpng didn't do it (i.e., no sRGB/gAMA chunk found) app_data_ptr[i] = image.m_isLinear ? val : srgb_to_linear_approx(val); } } else if (bit_depth == 16) { uint16_t *buffer_ptr16 = reinterpret_cast(buffer_ptr); // PNG 16-bit uses network byte order (big-endian) bool needs_swap = (png_get_uint_16((png_bytep) "\x01\x02") != 0x0102); // Check system endianness for (size_t i = 0; i < total_floats; ++i) { uint16_t raw_val = buffer_ptr16[i]; if (needs_swap) { // Swap bytes if system is little-endian raw_val = (raw_val >> 8) | (raw_val << 8); } float val = static_cast(raw_val) / 65535.0f; // Convert to linear if libpng didn't do it app_data_ptr[i] = image.m_isLinear ? val : srgb_to_linear_approx(val); } } else { LogError("libpng: Unsupported bit depth after transforms: " + std::to_string(bit_depth)); delete[] row_pointers; png_destroy_read_struct(&png_ptr, &info_ptr, nullptr); fclose(fp); return std::nullopt; } // If we assumed sRGB and converted manually, update state if (!image.m_isLinear) { image.m_isLinear = true; image.m_colorSpaceName = "Linear sRGB (Assumed)"; } // Clean up delete[] row_pointers; png_read_end(png_ptr, nullptr); // Finish reading remaining chunks png_destroy_read_struct(&png_ptr, &info_ptr, nullptr); fclose(fp); // Note: PNG typically doesn't store EXIF in the same way as JPEG/TIFF. // It can have text chunks (tEXt, zTXt, iTXt) which might hold metadata. // Reading these requires additional libpng calls (png_get_text). Not implemented here. return image; } // --- libtiff Loading --- // Suppress libtiff warnings/errors (optional, can be noisy) void tiffErrorHandler(const char *module, const char *fmt, va_list ap) { /* Do nothing */ } void tiffWarningHandler(const char *module, const char *fmt, va_list ap) { /* Do nothing */ } inline std::optional loadTiff(const std::string &filePath) { // Set custom handlers to suppress console output from libtiff // TIFFSetErrorHandler(tiffErrorHandler); // TIFFSetWarningHandler(tiffWarningHandler); TIFF *tif = TIFFOpen(filePath.c_str(), "r"); if (!tif) { LogError("Cannot open TIFF file: " + filePath); return std::nullopt; } AppImage image; uint32_t w, h; uint16_t bitsPerSample, samplesPerPixel, photometric, planarConfig; TIFFGetFieldDefaulted(tif, TIFFTAG_IMAGEWIDTH, &w); TIFFGetFieldDefaulted(tif, TIFFTAG_IMAGELENGTH, &h); TIFFGetFieldDefaulted(tif, TIFFTAG_BITSPERSAMPLE, &bitsPerSample); TIFFGetFieldDefaulted(tif, TIFFTAG_SAMPLESPERPIXEL, &samplesPerPixel); TIFFGetFieldDefaulted(tif, TIFFTAG_PHOTOMETRIC, &photometric); TIFFGetFieldDefaulted(tif, TIFFTAG_PLANARCONFIG, &planarConfig); image.m_width = w; image.m_height = h; image.m_channels = samplesPerPixel; // Usually 1 (Gray) or 3 (RGB) or 4 (RGBA) // --- Sanity Checks --- if (w == 0 || h == 0 || samplesPerPixel == 0) { LogError("libtiff: Invalid dimensions or samples per pixel."); TIFFClose(tif); return std::nullopt; } if (bitsPerSample != 8 && bitsPerSample != 16 && bitsPerSample != 32) { // Note: 32-bit float TIFFs exist but require different handling LogError("libtiff: Unsupported bits per sample: " + std::to_string(bitsPerSample) + ". Only 8/16 supported currently."); TIFFClose(tif); return std::nullopt; } if (photometric != PHOTOMETRIC_MINISBLACK && photometric != PHOTOMETRIC_MINISWHITE && photometric != PHOTOMETRIC_RGB && photometric != PHOTOMETRIC_PALETTE && photometric != PHOTOMETRIC_MASK && photometric != PHOTOMETRIC_SEPARATED /*CMYK?*/ && photometric != PHOTOMETRIC_LOGL && photometric != PHOTOMETRIC_LOGLUV) { LogWarning("libtiff: Unhandled photometric interpretation: " + std::to_string(photometric)); // We will try to read as RGB/Gray anyway... might be wrong. } // --- Data Reading --- // Use TIFFReadRGBAImage for simplicity - converts many formats to RGBA uint32 internally // Advantage: Handles various photometric interpretations, planar configs, palettes etc. // Disadvantage: Always gives 8-bit RGBA, loses 16-bit precision. Less control. // Alternative: Read scanlines manually (more complex, preserves bit depth) // Let's try the manual scanline approach to preserve bit depth size_t num_pixels = static_cast(w) * h; size_t total_values = num_pixels * samplesPerPixel; // Total uint8/uint16 values image.m_pixelData.resize(total_values); // Resize for float output image.m_isLinear = true; // Assume linear, correct later if gamma info found image.m_colorSpaceName = "Linear Unknown (TIFF)"; // Default assumption tmsize_t scanline_size = TIFFScanlineSize(tif); std::vector scanline_buffer(scanline_size); float *app_data_ptr = image.m_pixelData.data(); float max_val = (bitsPerSample == 8) ? 255.0f : 65535.0f; // Normalization factor if (planarConfig == PLANARCONFIG_CONTIG) { for (uint32_t row = 0; row < h; ++row) { if (TIFFReadScanline(tif, scanline_buffer.data(), row) < 0) { LogError("libtiff: Error reading scanline " + std::to_string(row)); TIFFClose(tif); return std::nullopt; } // Process the contiguous scanline if (bitsPerSample == 8) { unsigned char *buf_ptr = scanline_buffer.data(); for (size_t i = 0; i < w * samplesPerPixel; ++i) { *app_data_ptr++ = static_cast(buf_ptr[i]) / max_val; } } else { // bitsPerSample == 16 uint16_t *buf_ptr = reinterpret_cast(scanline_buffer.data()); for (size_t i = 0; i < w * samplesPerPixel; ++i) { *app_data_ptr++ = static_cast(buf_ptr[i]) / max_val; } } } } else if (planarConfig == PLANARCONFIG_SEPARATE) { // Read plane by plane - more complex, needs buffer per plane LogWarning("libtiff: Planar configuration PLANARCONFIG_SEPARATE reading not fully implemented, data might be incorrect."); // Basic attempt: Read all scanlines for each plane sequentially into the final buffer size_t plane_stride = w * h; for (uint16_t plane = 0; plane < samplesPerPixel; ++plane) { float *plane_start_ptr = image.m_pixelData.data() + plane; // Start at the channel offset for (uint32_t row = 0; row < h; ++row) { if (TIFFReadScanline(tif, scanline_buffer.data(), row, plane) < 0) { LogError("libtiff: Error reading scanline " + std::to_string(row) + " plane " + std::to_string(plane)); TIFFClose(tif); return std::nullopt; } // Process the separate scanline for this plane if (bitsPerSample == 8) { unsigned char *buf_ptr = scanline_buffer.data(); float *current_pixel_in_plane = plane_start_ptr + row * w * samplesPerPixel; for (uint32_t col = 0; col < w; ++col) { *current_pixel_in_plane = static_cast(buf_ptr[col]) / max_val; current_pixel_in_plane += samplesPerPixel; // Jump to next pixel's spot for this channel } } else { // 16 bit uint16_t *buf_ptr = reinterpret_cast(scanline_buffer.data()); float *current_pixel_in_plane = plane_start_ptr + row * w * samplesPerPixel; for (uint32_t col = 0; col < w; ++col) { *current_pixel_in_plane = static_cast(buf_ptr[col]) / max_val; current_pixel_in_plane += samplesPerPixel; } } } } } else { LogError("libtiff: Unknown planar configuration: " + std::to_string(planarConfig)); TIFFClose(tif); return std::nullopt; } // --- Post-processing based on Photometric interpretation --- // Handle grayscale inversion if (photometric == PHOTOMETRIC_MINISWHITE) { LogWarning("libtiff: Inverting MINISWHITE image."); for (float &val : image.m_pixelData) { val = 1.0f - val; // Simple inversion } } // TODO: Handle Palette -> RGB (needs reading the colormap tag) if (photometric == PHOTOMETRIC_PALETTE) { LogWarning("libtiff: PHOTOMETRIC_PALETTE not fully handled. Image loaded as indexed."); // Requires reading TIFFTAG_COLORMAP and expanding pixels } // TODO: Check for gamma tags or ICC profile tag // uint16_t* icc_profile_count = nullptr; // void* icc_profile_data = nullptr; // if (TIFFGetField(tif, TIFFTAG_ICCPROFILE, &icc_profile_count, &icc_profile_data) && icc_profile_count && icc_profile_data) { // image.m_iccProfile.resize(*icc_profile_count); // std::memcpy(image.m_iccProfile.data(), icc_profile_data, *icc_profile_count); // image.m_colorSpaceName = "Linear (Embedded ICC)"; // Or just "(Embedded ICC)" // } else { // // Check for gamma? Not standard. Assume sRGB/linear for now. // } // If no specific color info found, assume sRGB and convert to linear // For TIFF, it's often safer to assume linear if 16-bit, sRGB if 8-bit without other info. if (bitsPerSample == 8) { LogWarning("libtiff: Assuming 8-bit TIFF is sRGB. Converting to linear."); for (float &val : image.m_pixelData) { val = srgb_to_linear_approx(val); } image.m_isLinear = true; image.m_colorSpaceName = "Linear sRGB (Assumed)"; } else { LogWarning("libtiff: Assuming 16-bit TIFF is already linear."); image.m_isLinear = true; image.m_colorSpaceName = "Linear Unknown (TIFF)"; } TIFFClose(tif); // Try loading EXIF using LibTiff directory reading or Exiv2 (not EasyExif) // This basic example doesn't load EXIF from TIFFs. // You could use Exiv2 here if integrated. LogWarning("EXIF loading from TIFF not implemented in this example."); return image; } } // namespace AppImageUtil // --- AppImage Constructor Implementation --- AppImage::AppImage(uint32_t width, uint32_t height, uint32_t channels) : m_width(width), m_height(height), m_channels(channels), m_isLinear(true) { if (width > 0 && height > 0 && channels > 0) { try { m_pixelData.resize(static_cast(width) * height * channels); } catch (const std::bad_alloc &e) { AppImageUtil::LogError("Failed to allocate memory for image: " + std::string(e.what())); clear_image(); // Reset to empty state throw; // Re-throw exception } } // Default assumption is linear data in our internal format m_colorSpaceName = "Linear Generic"; } void AppImage::resize(uint32_t newWidth, uint32_t newHeight, uint32_t newChannels) { if (newChannels == 0) newChannels = m_channels; if (newChannels == 0) newChannels = 3; // Default if was empty m_width = newWidth; m_height = newHeight; m_channels = newChannels; if (newWidth == 0 || newHeight == 0 || newChannels == 0) { m_pixelData.clear(); // Keep metadata? Optional. } else { try { m_pixelData.resize(static_cast(newWidth) * newHeight * newChannels); // Note: Resizing doesn't preserve pixel content intelligently. // Consider adding different resize modes (clear, copy existing, etc.) } catch (const std::bad_alloc &e) { AppImageUtil::LogError("Failed to allocate memory during resize: " + std::string(e.what())); clear_image(); throw; } } } void AppImage::clear_image() { m_width = 0; m_height = 0; m_channels = 0; m_pixelData.clear(); m_metadata.clear(); m_iccProfile.clear(); m_colorSpaceName = "Unknown"; m_isLinear = true; } // --- loadImage Implementation --- std::optional loadImage(const std::string &filePath) { using namespace AppImageUtil; DetectedFileType type = detectFileType(filePath); try { switch (type) { case DetectedFileType::RAW: LogWarning("Detected type: RAW (using LibRaw)"); return loadRaw(filePath); case DetectedFileType::JPEG: LogWarning("Detected type: JPEG (using libjpeg)"); return loadJpeg(filePath); case DetectedFileType::PNG: LogWarning("Detected type: PNG (using libpng)"); return loadPng(filePath); case DetectedFileType::TIFF: LogWarning("Detected type: TIFF (using libtiff)"); // LibRaw can sometimes open TIFFs that contain RAW data. Try it first? // For now, directly use libtiff. return loadTiff(filePath); case DetectedFileType::UNKNOWN: default: LogError("Unknown or unsupported file type: " + filePath); return std::nullopt; } } catch (const std::exception &e) { LogError("Exception caught during image loading: " + std::string(e.what())); return std::nullopt; } catch (...) { LogError("Unknown exception caught during image loading."); return std::nullopt; } } // --- saveImage Implementation --- namespace AppImageUtil { // --- libjpeg Saving --- inline bool saveJpeg(const AppImage &image, const std::string &filePath, int quality) { if (image.getChannels() != 1 && image.getChannels() != 3) { LogError("libjpeg save: Can only save 1 (Grayscale) or 3 (RGB) channels. Image has " + std::to_string(image.getChannels())); return false; } FILE *outfile = fopen(filePath.c_str(), "wb"); if (!outfile) { LogError("Cannot open file for JPEG writing: " + filePath); return false; } jpeg_compress_struct cinfo; JpegErrorManager jerr; // Use the same error manager as loading // Setup error handling cinfo.err = jpeg_std_error(&jerr.pub); jerr.pub.error_exit = jpegErrorExit; // Use the same exit function if (setjmp(jerr.setjmp_buffer)) { // Error occurred during compression jpeg_destroy_compress(&cinfo); fclose(outfile); return false; } // Initialize compression object jpeg_create_compress(&cinfo); jpeg_stdio_dest(&cinfo, outfile); // Set parameters cinfo.image_width = image.getWidth(); cinfo.image_height = image.getHeight(); cinfo.input_components = image.getChannels(); cinfo.in_color_space = (image.getChannels() == 1) ? JCS_GRAYSCALE : JCS_RGB; jpeg_set_defaults(&cinfo); jpeg_set_quality(&cinfo, std::max(1, std::min(100, quality)), TRUE /* limit to baseline-JPEG */); // Could set density, comments, etc. here if needed using jpeg_set_... functions // Start compressor jpeg_start_compress(&cinfo, TRUE); // Prepare 8-bit sRGB scanline buffer int row_stride = cinfo.image_width * cinfo.input_components; std::vector scanline_buffer(row_stride); const float *app_data = image.getData(); // Process scanlines while (cinfo.next_scanline < cinfo.image_height) { unsigned char *buffer_ptr = scanline_buffer.data(); size_t row_start_index = static_cast(cinfo.next_scanline) * cinfo.image_width * cinfo.input_components; // Convert one row from linear float to 8-bit sRGB uchar for (int i = 0; i < row_stride; ++i) { float linear_val = app_data[row_start_index + i]; float srgb_val = linear_to_srgb_approx(linear_val); int int_val = static_cast(std::round(srgb_val * 255.0f)); buffer_ptr[i] = static_cast(std::max(0, std::min(255, int_val))); } JSAMPROW row_pointer[1]; row_pointer[0] = scanline_buffer.data(); jpeg_write_scanlines(&cinfo, row_pointer, 1); } // Finish compression and clean up jpeg_finish_compress(&cinfo); jpeg_destroy_compress(&cinfo); fclose(outfile); // --- Metadata Saving --- LogWarning("JPEG EXIF/ICC Metadata saving is NOT implemented."); // Saving metadata would typically involve: // 1. Using Exiv2 library. // 2. Opening the file *after* libjpeg saves the pixels. // 3. Writing the metadata from image.m_metadata and image.m_iccProfile into the file structure. return true; } // --- libpng Saving --- inline bool savePng(const AppImage &image, const std::string &filePath, int bit_depth_out) { if (bit_depth_out != 8 && bit_depth_out != 16) { LogError("libpng save: Only 8 or 16 bit output supported."); return false; } if (image.getChannels() < 1 || image.getChannels() > 4 || image.getChannels() == 2) { LogError("libpng save: Can only save 1 (Gray), 3 (RGB), or 4 (RGBA) channels. Image has " + std::to_string(image.getChannels())); return false; } FILE *fp = fopen(filePath.c_str(), "wb"); if (!fp) { LogError("Cannot open file for PNG writing: " + filePath); return false; } png_structp png_ptr = png_create_write_struct(PNG_LIBPNG_VER_STRING, nullptr, pngErrorFunc, pngWarningFunc); if (!png_ptr) { LogError("libpng: png_create_write_struct failed"); fclose(fp); return false; } png_infop info_ptr = png_create_info_struct(png_ptr); if (!info_ptr) { LogError("libpng: png_create_info_struct failed"); png_destroy_write_struct(&png_ptr, nullptr); fclose(fp); return false; } // Setup jump buffer for error handling jmp_buf jmpbuf; if (setjmp(jmpbuf)) { LogError("libpng: Error during write"); png_destroy_write_struct(&png_ptr, &info_ptr); fclose(fp); return false; } png_set_error_fn(png_ptr, reinterpret_cast(&jmpbuf), pngErrorFunc, pngWarningFunc); png_init_io(png_ptr, fp); // Determine PNG color type int color_type; switch (image.getChannels()) { case 1: color_type = PNG_COLOR_TYPE_GRAY; break; case 3: color_type = PNG_COLOR_TYPE_RGB; break; case 4: color_type = PNG_COLOR_TYPE_RGB_ALPHA; break; default: /* Should have been caught earlier */ return false; } // Set IHDR chunk png_set_IHDR(png_ptr, info_ptr, image.getWidth(), image.getHeight(), bit_depth_out, color_type, PNG_INTERLACE_NONE, PNG_COMPRESSION_TYPE_DEFAULT, PNG_FILTER_TYPE_DEFAULT); // Set Gamma/sRGB info bool save_as_srgb = (bit_depth_out == 8); // Convention: Save 8-bit as sRGB, 16-bit as linear if (save_as_srgb) { png_set_sRGB_gAMA_and_cHRM(png_ptr, info_ptr, PNG_sRGB_INTENT_PERCEPTUAL); LogWarning("libpng save: Saving 8-bit PNG with sRGB chunk."); } else { // 16-bit linear png_set_gAMA(png_ptr, info_ptr, 1.0); // Explicitly linear gamma LogWarning("libpng save: Saving 16-bit PNG with gamma 1.0 (linear)."); } // Write header info png_write_info(png_ptr, info_ptr); // --- Prepare Data --- std::vector row_pointers(image.getHeight()); size_t values_per_row = static_cast(image.getWidth()) * image.getChannels(); size_t bytes_per_value = (bit_depth_out == 8) ? 1 : 2; size_t row_bytes = values_per_row * bytes_per_value; std::vector output_buffer(row_bytes * image.getHeight()); const float *app_data = image.getData(); bool needs_swap = (bit_depth_out == 16 && (png_get_uint_16((png_bytep) "\x01\x02") != 0x0102)); // Check endianness only for 16-bit // Convert internal float data to target format row by row for (uint32_t y = 0; y < image.getHeight(); ++y) { unsigned char *row_buf_ptr = output_buffer.data() + y * row_bytes; row_pointers[y] = row_buf_ptr; size_t row_start_index = static_cast(y) * values_per_row; if (bit_depth_out == 8) { unsigned char *uchar_ptr = row_buf_ptr; for (size_t i = 0; i < values_per_row; ++i) { float linear_val = app_data[row_start_index + i]; float srgb_val = linear_to_srgb_approx(linear_val); // Convert to sRGB for 8-bit output int int_val = static_cast(std::round(srgb_val * 255.0f)); uchar_ptr[i] = static_cast(std::max(0, std::min(255, int_val))); } } else { // 16-bit uint16_t *ushort_ptr = reinterpret_cast(row_buf_ptr); for (size_t i = 0; i < values_per_row; ++i) { float linear_val = app_data[row_start_index + i]; // Clamp linear value before scaling for 16-bit output (0.0 to 1.0 range typical for linear PNG) linear_val = std::fmax(0.0f, std::fmin(1.0f, linear_val)); int int_val = static_cast(std::round(linear_val * 65535.0f)); uint16_t val16 = static_cast(std::max(0, std::min(65535, int_val))); if (needs_swap) { // Swap bytes for big-endian PNG format ushort_ptr[i] = (val16 >> 8) | (val16 << 8); } else { ushort_ptr[i] = val16; } } } } // Write image data png_write_image(png_ptr, row_pointers.data()); // End writing png_write_end(png_ptr, nullptr); // Clean up png_destroy_write_struct(&png_ptr, &info_ptr); fclose(fp); LogWarning("PNG Metadata saving (text chunks, ICC) is NOT implemented."); return true; } // --- libtiff Saving --- inline bool saveTiff(const AppImage &image, const std::string &filePath, int bit_depth_out) { if (bit_depth_out != 8 && bit_depth_out != 16) { LogError("libtiff save: Only 8 or 16 bit output supported."); return false; } if (image.getChannels() < 1 || image.getChannels() > 4 || image.getChannels() == 2) { LogError("libtiff save: Can only save 1 (Gray), 3 (RGB), or 4 (RGBA) channels. Image has " + std::to_string(image.getChannels())); return false; } TIFF *tif = TIFFOpen(filePath.c_str(), "w"); if (!tif) { LogError("Cannot open file for TIFF writing: " + filePath); return false; } // --- Set Core TIFF Tags --- TIFFSetField(tif, TIFFTAG_IMAGEWIDTH, image.getWidth()); TIFFSetField(tif, TIFFTAG_IMAGELENGTH, image.getHeight()); TIFFSetField(tif, TIFFTAG_SAMPLESPERPIXEL, static_cast(image.getChannels())); TIFFSetField(tif, TIFFTAG_BITSPERSAMPLE, static_cast(bit_depth_out)); TIFFSetField(tif, TIFFTAG_ORIENTATION, ORIENTATION_TOPLEFT); TIFFSetField(tif, TIFFTAG_PLANARCONFIG, PLANARCONFIG_CONTIG); // Interleaved is simpler // Set Photometric Interpretation uint16_t photometric; if (image.getChannels() == 1) { photometric = PHOTOMETRIC_MINISBLACK; // Grayscale } else if (image.getChannels() >= 3) { photometric = PHOTOMETRIC_RGB; // RGB or RGBA if (image.getChannels() == 4) { // Need to specify that the extra channel is Alpha uint16_t extra_samples = 1; uint16_t sample_info[] = {EXTRASAMPLE_ASSOCALPHA}; // Associated alpha TIFFSetField(tif, TIFFTAG_EXTRASAMPLES, extra_samples, sample_info); } } else { LogError("libtiff save: Unexpected channel count: " + std::to_string(image.getChannels())); TIFFClose(tif); return false; } TIFFSetField(tif, TIFFTAG_PHOTOMETRIC, photometric); // Compression (optional, default is none) TIFFSetField(tif, TIFFTAG_COMPRESSION, COMPRESSION_NONE); // Examples: COMPRESSION_LZW, COMPRESSION_ADOBE_DEFLATE // Rows per strip (can affect performance/compatibility) // A sensible default is often related to scanline buffer size. TIFFSetField(tif, TIFFTAG_ROWSPERSTRIP, TIFFDefaultStripSize(tif, (uint32_t)-1)); // Software Tag (optional) TIFFSetField(tif, TIFFTAG_SOFTWARE, "AppImage Saver"); // --- Prepare and Write Data --- size_t values_per_row = static_cast(image.getWidth()) * image.getChannels(); size_t bytes_per_value = (bit_depth_out == 8) ? 1 : 2; tmsize_t row_bytes = values_per_row * bytes_per_value; std::vector output_buffer(row_bytes); // Buffer for one row const float *app_data = image.getData(); bool save_as_srgb = (bit_depth_out == 8); // Convention: 8-bit=sRGB, 16-bit=Linear for (uint32_t y = 0; y < image.getHeight(); ++y) { unsigned char *row_buf_ptr = output_buffer.data(); size_t row_start_index = static_cast(y) * values_per_row; if (bit_depth_out == 8) { unsigned char *uchar_ptr = row_buf_ptr; for (size_t i = 0; i < values_per_row; ++i) { float linear_val = app_data[row_start_index + i]; float srgb_val = linear_to_srgb_approx(linear_val); // Convert to sRGB int int_val = static_cast(std::round(srgb_val * 255.0f)); uchar_ptr[i] = static_cast(std::max(0, std::min(255, int_val))); } } else { // 16-bit uint16_t *ushort_ptr = reinterpret_cast(row_buf_ptr); for (size_t i = 0; i < values_per_row; ++i) { float linear_val = app_data[row_start_index + i]; // Clamp linear [0,1] before scaling linear_val = std::fmax(0.0f, std::fmin(1.0f, linear_val)); int int_val = static_cast(std::round(linear_val * 65535.0f)); ushort_ptr[i] = static_cast(std::max(0, std::min(65535, int_val))); // Note: TIFF uses native byte order by default, no swapping needed usually. } } // Write the scanline if (TIFFWriteScanline(tif, row_buf_ptr, y, 0) < 0) { LogError("libtiff save: Error writing scanline " + std::to_string(y)); TIFFClose(tif); return false; } } // Clean up TIFFClose(tif); LogWarning("TIFF EXIF/ICC Metadata saving is NOT implemented."); // Saving metadata requires: // 1. Using Exiv2 or LibTiff's directory writing functions *before* closing the file. // 2. For ICC: TIFFSetField(tif, TIFFTAG_ICCPROFILE, count, data_ptr); return true; } } // namespace AppImageUtil namespace ImGuiImageViewerUtil { // Linear float [0,1+] -> sRGB approx [0,1] inline float linear_to_srgb_approx(float linearVal) { if (linearVal <= 0.0f) return 0.0f; linearVal = std::fmax(0.0f, std::fmin(1.0f, linearVal)); // Clamp for display if (linearVal <= 0.0031308f) { return linearVal * 12.92f; } else { return 1.055f * std::pow(linearVal, 1.0f / 2.4f) - 0.055f; } } // Round float to nearest integer inline float Round(float f) { return ImFloor(f + 0.5f); } } // namespace ImGuiImageViewerUtil bool loadImageTexture(AppImage &appImage) { if (appImage.isEmpty() || appImage.getWidth() == 0 || appImage.getHeight() == 0) { AppImageUtil::LogError("loadImageTexture: Image is empty."); return false; } if (!appImage.isLinear()) { // This shouldn't happen if loadImage converts correctly, but good practice to check. AppImageUtil::LogWarning("loadImageTexture: Warning - Image data is not linear. Pipeline expects linear input."); // Ideally, convert to linear here if not already done. For now, proceed with caution. } const int width = static_cast(appImage.getWidth()); const int height = static_cast(appImage.getHeight()); const int channels = static_cast(appImage.getChannels()); const float *linearData = appImage.getData(); size_t numFloats = static_cast(width) * height * channels; if (!linearData || numFloats == 0) { AppImageUtil::LogError("loadImageTexture: Image data pointer is null or size is zero."); return false; } // --- Determine OpenGL texture format --- GLenum internalFormat; GLenum dataFormat; GLenum dataType = GL_FLOAT; std::vector textureDataBuffer; // Temporary buffer if we need to convert format (e.g., RGB -> RGBA) const float* dataPtr = linearData; if (channels == 1) { internalFormat = GL_R16F; // Single channel, 16-bit float dataFormat = GL_RED; // Expand Grayscale to RGBA for easier shader handling (optional, shaders could handle GL_RED) // Example: Expand to RGBA float buffer textureDataBuffer.resize(static_cast(width) * height * 4); float* outPtr = textureDataBuffer.data(); for(int i = 0; i < width * height; ++i) { float val = linearData[i]; *outPtr++ = val; *outPtr++ = val; *outPtr++ = val; *outPtr++ = 1.0f; // Alpha } internalFormat = GL_RGBA16F; // Use RGBA16F if expanding dataFormat = GL_RGBA; dataPtr = textureDataBuffer.data(); // Point to the new buffer AppImageUtil::LogWarning("loadImageTexture: Expanding 1-channel to RGBA16F for texture."); } else if (channels == 3) { internalFormat = GL_RGBA16F; // Store as RGBA, easier for FBOs/blending dataFormat = GL_RGBA; // Need to convert RGB float -> RGBA float textureDataBuffer.resize(static_cast(width) * height * 4); float* outPtr = textureDataBuffer.data(); const float* inPtr = linearData; for(int i = 0; i < width * height; ++i) { *outPtr++ = *inPtr++; // R *outPtr++ = *inPtr++; // G *outPtr++ = *inPtr++; // B *outPtr++ = 1.0f; // A } dataPtr = textureDataBuffer.data(); // Point to the new buffer AppImageUtil::LogWarning("loadImageTexture: Expanding 3-channel RGB to RGBA16F for texture."); } else if (channels == 4) { internalFormat = GL_RGBA16F; // Native RGBA dataFormat = GL_RGBA; dataPtr = linearData; // Use original data directly } else { AppImageUtil::LogError("loadImageTexture: Unsupported number of channels: " + std::to_string(channels)); return false; } // --- Upload to OpenGL Texture --- GLint lastTexture; glGetIntegerv(GL_TEXTURE_BINDING_2D, &lastTexture); if (appImage.m_textureId == 0) { glGenTextures(1, &appImage.m_textureId); AppImageUtil::LogWarning("loadImageTexture: Generated new texture ID: " + std::to_string(appImage.m_textureId)); } else { AppImageUtil::LogWarning("loadImageTexture: Reusing texture ID: " + std::to_string(appImage.m_textureId)); } glBindTexture(GL_TEXTURE_2D, appImage.m_textureId); // Use GL_LINEAR for smoother results when zooming/scaling in the viewer, even if processing is nearest neighbor. // The processing pipeline itself uses FBOs, textures don't need mipmaps typically. glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glPixelStorei(GL_UNPACK_ALIGNMENT, 1); // Ensure correct alignment, especially for RGB data glPixelStorei(GL_UNPACK_ROW_LENGTH, 0); // Data is contiguous // Check if texture dimensions/format need updating bool needsTexImage = true; if (appImage.m_textureWidth == width && appImage.m_textureHeight == height) { // Could potentially use glTexSubImage2D if format matches, but glTexImage2D is safer // if the internal format might change or if it's the first load. // For simplicity, we'll just recreate with glTexImage2D. AppImageUtil::LogWarning("loadImageTexture: Texture dimensions match, overwriting with glTexImage2D."); } else { AppImageUtil::LogWarning("loadImageTexture: Texture dimensions or format mismatch, recreating with glTexImage2D."); } glTexImage2D(GL_TEXTURE_2D, 0, internalFormat, width, height, 0, dataFormat, dataType, dataPtr); GLenum err = glGetError(); if (err != GL_NO_ERROR) { AppImageUtil::LogError("loadImageTexture: OpenGL Error after glTexImage2D: " + std::to_string(err)); glBindTexture(GL_TEXTURE_2D, lastTexture); // Restore previous binding // Consider deleting the texture ID if creation failed badly? if (appImage.m_textureId != 0) { glDeleteTextures(1, &appImage.m_textureId); appImage.m_textureId = 0; } return false; } else { AppImageUtil::LogWarning("loadImageTexture: glTexImage2D successful."); } // Optional: Generate mipmaps if you want smoother downscaling *in the final view* // glGenerateMipmap(GL_TEXTURE_2D); // glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR); glBindTexture(GL_TEXTURE_2D, lastTexture); // Restore previous binding appImage.m_textureWidth = width; appImage.m_textureHeight = height; AppImageUtil::LogWarning("loadImageTexture: Successfully loaded linear data into texture ID " + std::to_string(appImage.m_textureId)); return true; } // --- saveImage Implementation --- bool saveImage(const AppImage &image, const std::string &filePath, ImageSaveFormat format, int quality) { using namespace AppImageUtil; if (image.isEmpty()) { LogError("Cannot save an empty image."); return false; } // Ensure internal data is linear before saving (or handle conversion if needed) if (!image.isLinear()) { LogWarning("Attempting to save non-linear internal data. Results may be incorrect if conversion to target space isn't handled properly."); // Ideally, convert to linear here if required by the saving functions. // For this implementation, we assume the saving functions expect linear input // and perform the linear -> target space conversion (e.g., linear -> sRGB). } try { switch (format) { case ImageSaveFormat::JPEG: return saveJpeg(image, filePath, quality); case ImageSaveFormat::PNG_8: return savePng(image, filePath, 8); case ImageSaveFormat::PNG_16: return savePng(image, filePath, 16); case ImageSaveFormat::TIFF_8: return saveTiff(image, filePath, 8); case ImageSaveFormat::TIFF_16: return saveTiff(image, filePath, 16); case ImageSaveFormat::UNKNOWN: default: LogError("Unknown or unsupported save format specified."); return false; } } catch (const std::exception &e) { LogError("Exception caught during image saving: " + std::string(e.what())); return false; } catch (...) { LogError("Unknown exception caught during image saving."); return false; } } #endif // APP_IMAGE_IMPLEMENTATION #endif // APP_IMAGE_H