173 KiB
173 KiB
main.cpp
// Dear ImGui: standalone example application for SDL2 + OpenGL
// (SDL is a cross-platform general purpose library for handling windows, inputs, OpenGL/Vulkan/Metal graphics context creation, etc.)
// Learn about Dear ImGui:
// - FAQ https://dearimgui.com/faq
// - Getting Started https://dearimgui.com/getting-started
// - Documentation https://dearimgui.com/docs (same as your local docs/ folder).
// - Introduction, links and more at the top of imgui.cpp
#define IMGUI_DEFINE_MATH_OPERATORS
#include <GL/glew.h>
#include "imgui.h"
#include "imgui_impl_sdl2.h"
#include "imgui_impl_opengl3.h"
#include <stdio.h>
#include <SDL.h>
#if defined(IMGUI_IMPL_OPENGL_ES2)
#include <SDL_opengles2.h>
#else
#include <SDL_opengl.h>
#include <GL/gl.h>
#endif
// This example can also compile and run with Emscripten! See 'Makefile.emscripten' for details.
#ifdef __EMSCRIPTEN__
#include "../libs/emscripten/emscripten_mainloop_stub.h"
#endif
#include "exif.h"
#define APP_IMAGE_IMPLEMENTATION
#define IMGUI_IMAGE_VIEWER_IMPLEMENTATION
#include "app_image.h"
#include "tex_inspect_opengl.h"
#include "imgui_tex_inspect.h"
#include "shaderutils.h"
static float exposure = 0.0f;
static float contrast = 0.0f;
static float highlights = 0.0f;
static float shadows = 0.0f;
static float whites = 0.0f;
static float blacks = 0.0f;
static float temperature = 6500.0f; // Example starting point (Kelvin)
static float tint = 0.0f;
static float vibrance = 0.0f;
static float saturation = 0.0f;
static float clarity = 0.0f;
static float texture = 0.0f;
static float dehaze = 0.0f;
#include <string>
#include <vector>
#include <map>
#include <functional> // For std::function
#include <memory> // For unique_ptr
#include "imfilebrowser.h" // <<< Add this
#include <filesystem> // <<< Add for path manipulation (C++17)
struct ShaderUniform
{
std::string name;
GLint location = -1;
// Add type info if needed for different glUniform calls, or handle in setter
};
struct PipelineOperation
{
std::string name;
GLuint shaderProgram = 0;
bool enabled = true;
std::map<std::string, ShaderUniform> uniforms; // Map uniform name to its info
// Function to update uniforms based on global slider values etc.
std::function<void(GLuint /*program*/)> updateUniformsCallback;
// Store the actual slider variable pointers for direct modification in ImGui
// This avoids needing complex callbacks for simple sliders
float *exposureVal = nullptr;
float *contrastVal = nullptr;
float *highlightsVal = nullptr;
float *shadowsVal = nullptr;
float *whitesVal = nullptr;
float *blacksVal = nullptr;
float *temperatureVal = nullptr;
float *tintVal = nullptr;
float *vibranceVal = nullptr;
float *saturationVal = nullptr;
float *clarityVal = nullptr;
float *textureVal = nullptr;
float *dehazeVal = nullptr;
// ... add pointers for other controls as needed
PipelineOperation(std::string n) : name(std::move(n)) {}
void FindUniformLocations()
{
if (!shaderProgram)
return;
for (auto &pair : uniforms)
{
pair.second.location = glGetUniformLocation(shaderProgram, pair.second.name.c_str());
if (pair.second.location == -1 && name != "Passthrough" && name != "LinearToSRGB" && name != "SRGBToLinear")
{ // Ignore for simple shaders
// Don't treat missing texture samplers as errors here, they are set explicitly
if (pair.second.name != "InputTexture")
{
fprintf(stderr, "Warning: Uniform '%s' not found in shader '%s'\n", pair.second.name.c_str(), name.c_str());
}
}
}
}
};
// Enum for Color Spaces (expand later)
enum class ColorSpace
{
LINEAR_SRGB, // Linear Rec.709/sRGB primaries
SRGB // Non-linear sRGB (display)
// Add AdobeRGB, ProPhoto etc. later
};
const char *ColorSpaceToString(ColorSpace cs)
{
switch (cs)
{
case ColorSpace::LINEAR_SRGB:
return "Linear sRGB";
case ColorSpace::SRGB:
return "sRGB";
default:
return "Unknown";
}
}
bool ReadTextureToAppImage(GLuint textureId, int width, int height, AppImage &outImage)
{
if (textureId == 0 || width <= 0 || height <= 0)
{
fprintf(stderr, "ReadTextureToAppImage: Invalid parameters.\n");
return false;
}
// We assume the texture 'textureId' holds LINEAR RGBA FLOAT data (e.g., GL_RGBA16F)
// Resize AppImage to hold the data
outImage.resize(width, height, 4); // Expecting 4 channels (RGBA) from pipeline texture
outImage.m_isLinear = true; // Data we read back should be linear
outImage.m_colorSpaceName = "Linear sRGB"; // Assuming pipeline used sRGB primaries
std::vector<float> &pixelData = outImage.getPixelVector();
if (pixelData.empty())
{
fprintf(stderr, "ReadTextureToAppImage: Failed to allocate AppImage buffer.\n");
return false;
}
// Bind the texture
GLint lastTexture;
glGetIntegerv(GL_TEXTURE_BINDING_2D, &lastTexture);
glBindTexture(GL_TEXTURE_2D, textureId);
// Set alignment (good practice)
glPixelStorei(GL_PACK_ALIGNMENT, 1);
// Read the pixels
// We request GL_RGBA and GL_FLOAT as that's our assumed linear working format on GPU
glGetTexImage(GL_TEXTURE_2D,
0, // Mipmap level 0
GL_RGBA, // Request RGBA format
GL_FLOAT, // Request float data type
pixelData.data()); // Pointer to destination buffer
GLenum err = glGetError();
glBindTexture(GL_TEXTURE_2D, lastTexture); // Restore previous binding
if (err != GL_NO_ERROR)
{
fprintf(stderr, "ReadTextureToAppImage: OpenGL Error during glGetTexImage: %u\n", err);
outImage.clear_image(); // Clear invalid data
return false;
}
printf("ReadTextureToAppImage: Successfully read %dx%d texture.\n", width, height);
return true;
}
class ImageProcessingPipeline
{
private:
GLuint m_fbo[2] = {0, 0};
GLuint m_tex[2] = {0, 0}; // Ping-pong textures
GLuint m_vao = 0;
GLuint m_vbo = 0;
int m_texWidth = 0;
int m_texHeight = 0;
GLuint m_passthroughShader = 0;
GLuint m_linearToSrgbShader = 0;
GLuint m_srgbToLinearShader = 0;
void CreateFullscreenQuad()
{
// Simple quad covering -1 to 1 in x,y and 0 to 1 in u,v
float vertices[] = {
// positions // texCoords
-1.0f, 1.0f, 0.0f, 1.0f,
-1.0f, -1.0f, 0.0f, 0.0f,
1.0f, -1.0f, 1.0f, 0.0f,
-1.0f, 1.0f, 0.0f, 1.0f,
1.0f, -1.0f, 1.0f, 0.0f,
1.0f, 1.0f, 1.0f, 1.0f};
printf("Matrix ready.\n");
glGenVertexArrays(1, &m_vao);
printf("Fullscreen quad VAO created.\n");
glGenBuffers(1, &m_vbo);
printf("Fullscreen quad VBO created.\n");
glBindVertexArray(m_vao);
glBindBuffer(GL_ARRAY_BUFFER, m_vbo);
glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);
printf("Fullscreen quad VBO created.\n");
// Position attribute
glVertexAttribPointer(0, 2, GL_FLOAT, GL_FALSE, 4 * sizeof(float), (void *)0);
glEnableVertexAttribArray(0);
// Texture coordinate attribute
glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, 4 * sizeof(float), (void *)(2 * sizeof(float)));
glEnableVertexAttribArray(1);
glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindVertexArray(0);
printf("Fullscreen quad VAO/VBO created.\n");
}
void CreateOrResizeFBOs(int width, int height)
{
if (width == m_texWidth && height == m_texHeight && m_fbo[0] != 0)
{
return; // Already correct size
}
if (width <= 0 || height <= 0)
return; // Invalid dimensions
// Cleanup existing
DestroyFBOs();
m_texWidth = width;
m_texHeight = height;
glGenFramebuffers(2, m_fbo);
glGenTextures(2, m_tex);
GLint lastTexture;
glGetIntegerv(GL_TEXTURE_BINDING_2D, &lastTexture);
GLint lastFBO;
glGetIntegerv(GL_DRAW_FRAMEBUFFER_BINDING, &lastFBO); // Or GL_FRAMEBUFFER_BINDING
for (int i = 0; i < 2; ++i)
{
glBindFramebuffer(GL_FRAMEBUFFER, m_fbo[i]);
glBindTexture(GL_TEXTURE_2D, m_tex[i]);
// Create floating point texture
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA16F, width, height, 0, GL_RGBA, GL_FLOAT, nullptr);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); // Use NEAREST for processing steps
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
// Attach texture to FBO
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, m_tex[i], 0);
if (glCheckFramebufferStatus(GL_FRAMEBUFFER) != GL_FRAMEBUFFER_COMPLETE)
{
fprintf(stderr, "ERROR::FRAMEBUFFER:: Framebuffer %d is not complete!\n", i);
DestroyFBOs(); // Clean up partial setup
glBindTexture(GL_TEXTURE_2D, lastTexture);
glBindFramebuffer(GL_FRAMEBUFFER, lastFBO);
return;
}
else
{
printf("FBO %d (Texture %d) created successfully (%dx%d).\n", m_fbo[i], m_tex[i], width, height);
}
}
glBindTexture(GL_TEXTURE_2D, lastTexture);
glBindFramebuffer(GL_FRAMEBUFFER, lastFBO);
}
void DestroyFBOs()
{
if (m_fbo[0])
glDeleteFramebuffers(2, m_fbo);
if (m_tex[0])
glDeleteTextures(2, m_tex);
m_fbo[0] = m_fbo[1] = 0;
m_tex[0] = m_tex[1] = 0;
m_texWidth = m_texHeight = 0;
printf("Destroyed FBOs and textures.\n");
}
public:
// The ordered list of operations the user has configured
std::vector<PipelineOperation> activeOperations;
ColorSpace inputColorSpace = ColorSpace::LINEAR_SRGB; // Default based on AppImage goal
ColorSpace outputColorSpace = ColorSpace::SRGB; // Default for display
ImageProcessingPipeline() = default;
~ImageProcessingPipeline()
{
DestroyFBOs();
if (m_vao)
glDeleteVertexArrays(1, &m_vao);
if (m_vbo)
glDeleteBuffers(1, &m_vbo);
// Shaders owned by PipelineOperation structs should be deleted externally or via smart pointers
if (m_passthroughShader)
glDeleteProgram(m_passthroughShader);
if (m_linearToSrgbShader)
glDeleteProgram(m_linearToSrgbShader);
if (m_srgbToLinearShader)
glDeleteProgram(m_srgbToLinearShader);
printf("ImageProcessingPipeline destroyed.\n");
}
void Init(const std::string &shaderBasePath)
{
printf("Initializing ImageProcessingPipeline...\n");
CreateFullscreenQuad();
printf("Fullscreen quad created.\n");
// Load essential shaders
std::string vsPath = shaderBasePath + "passthrough.vert";
printf("Loading shaders from: %s\n", vsPath.c_str());
m_passthroughShader = LoadShaderProgramFromFiles(vsPath, shaderBasePath + "passthrough.frag");
m_linearToSrgbShader = LoadShaderProgramFromFiles(vsPath, shaderBasePath + "linear_to_srgb.frag");
m_srgbToLinearShader = LoadShaderProgramFromFiles(vsPath, shaderBasePath + "srgb_to_linear.frag");
printf("Loaded shaders: %s, %s, %s\n", vsPath.c_str(), (shaderBasePath + "linear_to_srgb.frag").c_str(), (shaderBasePath + "srgb_to_linear.frag").c_str());
if (!m_passthroughShader || !m_linearToSrgbShader || !m_srgbToLinearShader)
{
fprintf(stderr, "Failed to load essential pipeline shaders!\n");
}
else
{
printf("Essential pipeline shaders loaded.\n");
}
}
void ResetResources()
{
printf("Pipeline: Resetting FBOs and Textures.\n");
DestroyFBOs(); // Call the existing cleanup method
}
// Call this each frame to process the image
// Returns the Texture ID of the final processed image
GLuint ProcessImage(GLuint inputTextureId, int width, int height, bool applyOutputConversion = true)
{
if (inputTextureId == 0 || width <= 0 || height <= 0)
{
return 0; // No input or invalid size
}
CreateOrResizeFBOs(width, height);
if (m_fbo[0] == 0)
{
fprintf(stderr, "FBOs not ready, cannot process image.\n");
return 0; // FBOs not ready
}
// Store original viewport and FBO to restore later
GLint viewport[4];
glGetIntegerv(GL_VIEWPORT, viewport);
GLint lastFBO;
glGetIntegerv(GL_DRAW_FRAMEBUFFER_BINDING, &lastFBO);
glViewport(0, 0, m_texWidth, m_texHeight);
glBindVertexArray(m_vao); // Bind the quad VAO once
int currentSourceTexIndex = 0; // Start with texture m_tex[0] as the first *write* target
GLuint currentReadTexId = inputTextureId; // Initially read from the original image
// --- Input Color Space Conversion ---
bool inputConversionDone = false;
if (inputColorSpace == ColorSpace::SRGB)
{
printf("Pipeline: Applying sRGB -> Linear conversion.\n");
glBindFramebuffer(GL_FRAMEBUFFER, m_fbo[currentSourceTexIndex]);
glUseProgram(m_srgbToLinearShader);
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_1D, currentReadTexId);
glUniform1i(glGetUniformLocation(m_srgbToLinearShader, "InputTexture"), 0);
glDrawArrays(GL_TRIANGLES, 0, 6);
currentReadTexId = m_tex[currentSourceTexIndex]; // Next read is from the texture we just wrote to
currentSourceTexIndex = 1 - currentSourceTexIndex; // Swap target FBO/texture
inputConversionDone = true;
}
else
{
printf("Pipeline: Input is Linear, no conversion needed.\n");
// If input is already linear, we might need to copy it to the first FBO texture
// if there are actual processing steps, otherwise the first step reads the original.
// This copy ensures the ping-pong works correctly even if the first *user* step is disabled.
// However, if NO user steps are enabled, we want to display the original (potentially with output conversion).
bool anyUserOpsEnabled = false;
for (const auto &op : activeOperations)
{
if (op.enabled && op.shaderProgram && op.name != "Passthrough")
{ // Check it's a real operation
anyUserOpsEnabled = true;
break;
}
}
if (anyUserOpsEnabled)
{
// Need to copy original linear input into the pipeline's texture space
printf("Pipeline: Copying linear input to FBO texture for processing.\n");
glBindFramebuffer(GL_FRAMEBUFFER, m_fbo[currentSourceTexIndex]);
glUseProgram(m_passthroughShader); // Use simple passthrough
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, currentReadTexId);
glUniform1i(glGetUniformLocation(m_passthroughShader, "InputTexture"), 0);
glDrawArrays(GL_TRIANGLES, 0, 6);
currentReadTexId = m_tex[currentSourceTexIndex];
currentSourceTexIndex = 1 - currentSourceTexIndex;
inputConversionDone = true;
}
else
{
// No user ops, keep reading directly from original inputTextureId
inputConversionDone = false; // Treat as if no initial step happened yet
printf("Pipeline: No enabled user operations, skipping initial copy.\n");
}
}
// --- Apply Editing Operations ---
int appliedOps = 0;
for (const auto &op : activeOperations)
{
if (op.enabled && op.shaderProgram)
{
printf("Pipeline: Applying operation: %s\n", op.name.c_str());
glBindFramebuffer(GL_FRAMEBUFFER, m_fbo[currentSourceTexIndex]);
glUseProgram(op.shaderProgram);
// Set Input Texture Sampler
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, currentReadTexId);
GLint loc = glGetUniformLocation(op.shaderProgram, "InputTexture");
if (loc != -1)
glUniform1i(loc, 0);
else if (op.name != "Passthrough")
fprintf(stderr, "Warning: InputTexture uniform not found in shader %s\n", op.name.c_str());
// Set operation-specific uniforms
if (op.updateUniformsCallback)
{
op.updateUniformsCallback(op.shaderProgram);
}
else
{
// Alternative: Set uniforms directly based on stored pointers
if (op.exposureVal && op.uniforms.count("exposureValue"))
{
glUniform1f(op.uniforms.at("exposureValue").location, *op.exposureVal);
}
if (op.contrastVal && op.uniforms.count("contrastValue"))
{
glUniform1f(op.uniforms.at("contrastValue").location, *op.contrastVal);
}
if (op.clarityVal && op.uniforms.count("clarityValue"))
{
glUniform1f(op.uniforms.at("clarityValue").location, *op.clarityVal);
}
if (op.highlightsVal && op.uniforms.count("highlightsValue"))
{
glUniform1f(op.uniforms.at("highlightsValue").location, *op.highlightsVal);
}
if (op.shadowsVal && op.uniforms.count("shadowsValue"))
{
glUniform1f(op.uniforms.at("shadowsValue").location, *op.shadowsVal);
}
if (op.whitesVal && op.uniforms.count("whitesValue"))
{
glUniform1f(op.uniforms.at("whitesValue").location, *op.whitesVal);
}
if (op.blacksVal && op.uniforms.count("blacksValue"))
{
glUniform1f(op.uniforms.at("blacksValue").location, *op.blacksVal);
}
if (op.textureVal && op.uniforms.count("textureValue"))
{
glUniform1f(op.uniforms.at("textureValue").location, *op.textureVal);
}
if (op.dehazeVal && op.uniforms.count("dehazeValue"))
{
glUniform1f(op.uniforms.at("dehazeValue").location, *op.dehazeVal);
}
if (op.saturationVal && op.uniforms.count("saturationValue"))
{
glUniform1f(op.uniforms.at("saturationValue").location, *op.saturationVal);
}
if (op.vibranceVal && op.uniforms.count("vibranceValue"))
{
glUniform1f(op.uniforms.at("vibranceValue").location, *op.vibranceVal);
}
if (op.temperatureVal && op.uniforms.count("temperatureValue"))
{
glUniform1f(op.uniforms.at("temperatureValue").location, *op.temperatureVal);
}
if (op.tintVal && op.uniforms.count("tintValue"))
{
glUniform1f(op.uniforms.at("tintValue").location, *op.tintVal);
}
}
glDrawArrays(GL_TRIANGLES, 0, 6);
// Prepare for next pass
currentReadTexId = m_tex[currentSourceTexIndex]; // Next pass reads from the texture we just wrote
currentSourceTexIndex = 1 - currentSourceTexIndex; // Swap FBO target
appliedOps++;
}
}
// If no user ops were applied AND no input conversion happened,
// currentReadTexId is still the original inputTextureId.
if (appliedOps == 0 && !inputConversionDone)
{
printf("Pipeline: No operations applied, output = input (%d).\n", currentReadTexId);
// Proceed to output conversion using original inputTextureId
}
else if (appliedOps > 0 || inputConversionDone)
{
printf("Pipeline: %d operations applied, final intermediate texture ID: %d\n", appliedOps, currentReadTexId);
// currentReadTexId now holds the result of the last applied operation (or the input conversion)
}
else
{
// This case should ideally not be reached if logic above is correct
printf("Pipeline: Inconsistent state after processing loop.\n");
}
// --- Output Color Space Conversion ---
GLuint finalTextureId = currentReadTexId; // Assume this is the final one unless converted
if (applyOutputConversion)
{
if (outputColorSpace == ColorSpace::SRGB)
{
// Check if the last written data (currentReadTexId) is already sRGB.
// In this simple setup, it's always linear *unless* no ops applied and input was sRGB.
// More robustly: Track the color space through the pipeline.
// For now, assume currentReadTexId holds linear data if any op or input conversion happened.
bool needsLinearToSrgb = (appliedOps > 0 || inputConversionDone);
if (!needsLinearToSrgb && inputColorSpace == ColorSpace::SRGB)
{
printf("Pipeline: Output is sRGB, and input was sRGB with no ops, no final conversion needed.\n");
// Input was sRGB, no ops applied, output should be sRGB. currentReadTexId is original sRGB input.
finalTextureId = currentReadTexId;
}
else if (needsLinearToSrgb)
{
printf("Pipeline: Applying Linear -> sRGB conversion for output.\n");
glBindFramebuffer(GL_FRAMEBUFFER, m_fbo[currentSourceTexIndex]); // Use the *next* FBO for the final write
glUseProgram(m_linearToSrgbShader);
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, currentReadTexId); // Read the last result
glUniform1i(glGetUniformLocation(m_linearToSrgbShader, "InputTexture"), 0);
glDrawArrays(GL_TRIANGLES, 0, 6);
finalTextureId = m_tex[currentSourceTexIndex]; // The final result is in this texture
}
else
{
// Input was linear, no ops, output requires sRGB.
printf("Pipeline: Input Linear, no ops, applying Linear -> sRGB conversion for output.\n");
glBindFramebuffer(GL_FRAMEBUFFER, m_fbo[currentSourceTexIndex]);
glUseProgram(m_linearToSrgbShader);
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, currentReadTexId); // Read original linear input
glUniform1i(glGetUniformLocation(m_linearToSrgbShader, "InputTexture"), 0);
glDrawArrays(GL_TRIANGLES, 0, 6);
finalTextureId = m_tex[currentSourceTexIndex];
}
}
else
{
printf("Pipeline: Output is Linear, no final conversion needed.\n");
// If output should be linear, finalTextureId is already correct (it's currentReadTexId)
finalTextureId = currentReadTexId;
}
}
else
{
printf("Pipeline: Skipped output conversion. Final (linear) ID: %d\n", finalTextureId);
}
// --- Cleanup ---
glBindVertexArray(0);
glBindFramebuffer(GL_FRAMEBUFFER, lastFBO); // Restore original framebuffer binding
glViewport(viewport[0], viewport[1], viewport[2], viewport[3]); // Restore viewport
glUseProgram(0); // Unbind shader program
printf("Pipeline: ProcessImage returning final texture ID: %d\n", finalTextureId);
return finalTextureId;
}
};
static ImageProcessingPipeline g_pipeline; // <<< Global pipeline manager instance
static std::vector<std::unique_ptr<PipelineOperation>> g_allOperations; // Store all possible operations
static GLuint g_processedTextureId = 0; // Texture ID after pipeline processing
static ColorSpace g_inputColorSpace = ColorSpace::LINEAR_SRGB; // Connect to pipeline's setting
static ColorSpace g_outputColorSpace = ColorSpace::SRGB; // Connect to pipeline's setting
// File Dialogs
static ImGui::FileBrowser g_openFileDialog;
// Add flags for save dialog: Allow new filename, allow creating directories
static ImGui::FileBrowser g_exportSaveFileDialog(ImGuiFileBrowserFlags_EnterNewFilename | ImGuiFileBrowserFlags_CreateNewDir);
// Export Dialog State
static bool g_showExportWindow = false;
static ImageSaveFormat g_exportFormat = ImageSaveFormat::JPEG; // Default format
static int g_exportQuality = 90; // Default JPEG quality
static std::string g_exportErrorMsg = ""; // To display errors in the export dialog
// Current loaded file path (useful for default export name)
static std::string g_currentFilePath = "";
// Crop State
static bool g_cropActive = false;
static ImVec4 g_cropRectNorm = ImVec4(0.0f, 0.0f, 1.0f, 1.0f); // (MinX, MinY, MaxX, MaxY) normalized 0-1
static ImVec4 g_cropRectNormInitial = g_cropRectNorm; // Store initial state for cancel/dragging base
static float g_cropAspectRatio = 0.0f; // 0.0f = Freeform, > 0.0f = constrained (Width / Height)
static int g_selectedAspectRatioIndex = 0; // Index for the dropdown
static GLuint g_histogramComputeShader = 0;
static GLuint g_histogramSSBO = 0;
const int NUM_HISTOGRAM_BINS = 256;
const int HISTOGRAM_BUFFER_SIZE = NUM_HISTOGRAM_BINS * 3; // R, G, B
static std::vector<unsigned int> g_histogramDataCPU(HISTOGRAM_BUFFER_SIZE, 0);
static unsigned int g_histogramMaxCount = 255; // Max count found, for scaling (init to 1 to avoid div by zero)
static bool g_histogramResourcesInitialized = false;
// Interaction state
enum class CropHandle
{
NONE,
TOP_LEFT,
TOP_RIGHT,
BOTTOM_LEFT,
BOTTOM_RIGHT,
TOP,
BOTTOM,
LEFT,
RIGHT,
INSIDE
};
static CropHandle g_activeCropHandle = CropHandle::NONE;
static bool g_isDraggingCrop = false;
static ImVec2 g_dragStartMousePos = ImVec2(0, 0); // Screen coords
bool InitHistogramResources(const std::string& shaderBasePath) {
printf("Initializing Histogram Resources...\n");
// Load Compute Shader
// We need a way to load compute shaders, modify shader_utils or add here
std::string compSource = ReadFile(shaderBasePath + "histogram.comp"); // Assuming ReadFile exists
if (compSource.empty()) {
fprintf(stderr, "ERROR: Failed to read histogram.comp\n");
return false;
}
// Simple Compute Shader Compilation/Linking (add error checking!)
GLuint computeShaderObj = glCreateShader(GL_COMPUTE_SHADER);
const char* src = compSource.c_str();
glShaderSource(computeShaderObj, 1, &src, nullptr);
glCompileShader(computeShaderObj);
// --- Add GLint success; glGetShaderiv; glGetShaderInfoLog checks ---
GLint success;
glGetShaderiv(computeShaderObj, GL_COMPILE_STATUS, &success);
if (!success) {
GLint logLength;
glGetShaderiv(computeShaderObj, GL_INFO_LOG_LENGTH, &logLength);
std::vector<char> log(logLength);
glGetShaderInfoLog(computeShaderObj, logLength, nullptr, log.data());
fprintf(stderr, "ERROR::SHADER::HISTOGRAM::COMPILATION_FAILED\n%s\n", log.data());
glDeleteShader(computeShaderObj);
return false;
}
g_histogramComputeShader = glCreateProgram();
glAttachShader(g_histogramComputeShader, computeShaderObj);
glLinkProgram(g_histogramComputeShader);
// --- Add GLint success; glGetProgramiv; glGetProgramInfoLog checks ---
glGetProgramiv(g_histogramComputeShader, GL_LINK_STATUS, &success);
if (!success) {
GLint logLength;
glGetProgramiv(g_histogramComputeShader, GL_INFO_LOG_LENGTH, &logLength);
std::vector<char> log(logLength);
glGetProgramInfoLog(g_histogramComputeShader, logLength, nullptr, log.data());
fprintf(stderr, "ERROR::PROGRAM::HISTOGRAM::LINKING_FAILED\n%s\n", log.data());
glDeleteProgram(g_histogramComputeShader);
g_histogramComputeShader = 0;
glDeleteShader(computeShaderObj); // Delete shader obj even on link failure
return false;
}
glDeleteShader(computeShaderObj); // Delete shader object after linking
printf("Histogram compute shader loaded and linked successfully (Program ID: %u).\n", g_histogramComputeShader);
// Create Shader Storage Buffer Object (SSBO)
glGenBuffers(1, &g_histogramSSBO);
glBindBuffer(GL_SHADER_STORAGE_BUFFER, g_histogramSSBO);
// Allocate buffer size: 3 channels * 256 bins * size of uint
glBufferData(GL_SHADER_STORAGE_BUFFER, HISTOGRAM_BUFFER_SIZE * sizeof(unsigned int), NULL, GL_DYNAMIC_READ); // Data will be written by GPU, read by CPU
glBindBuffer(GL_SHADER_STORAGE_BUFFER, 0); // Unbind
GLenum err = glGetError();
if (err != GL_NO_ERROR || g_histogramSSBO == 0) {
fprintf(stderr, "ERROR: Failed to create histogram SSBO. OpenGL Error: %u\n", err);
if (g_histogramComputeShader) glDeleteProgram(g_histogramComputeShader);
g_histogramComputeShader = 0;
return false;
} else {
printf("Histogram SSBO created successfully (Buffer ID: %u, Size: %d bytes).\n", g_histogramSSBO, HISTOGRAM_BUFFER_SIZE * sizeof(unsigned int));
}
g_histogramResourcesInitialized = true;
return true;
}
// Aspect Ratio Options
struct AspectRatioOption
{
const char *name;
float ratio; // W/H
};
static std::vector<AspectRatioOption> g_aspectRatios = {
{"Freeform", 0.0f},
{"Original", 0.0f}, // Will be calculated dynamically
{"1:1", 1.0f},
{"16:9", 16.0f / 9.0f},
{"9:16", 9.0f / 16.0f},
{"4:3", 4.0f / 3.0f},
{"3:4", 3.0f / 4.0f},
// Add more as needed
};
void UpdateCropRect(ImVec4& rectNorm, CropHandle handle, ImVec2 deltaNorm, float aspectRatio) {
ImVec2 minXY = ImVec2(rectNorm.x, rectNorm.y);
ImVec2 maxXY = ImVec2(rectNorm.z, rectNorm.w);
// Apply delta based on handle
switch (handle) {
case CropHandle::TOP_LEFT: minXY += deltaNorm; break;
case CropHandle::TOP_RIGHT: minXY.y += deltaNorm.y; maxXY.x += deltaNorm.x; break;
case CropHandle::BOTTOM_LEFT: minXY.x += deltaNorm.x; maxXY.y += deltaNorm.y; break;
case CropHandle::BOTTOM_RIGHT: maxXY += deltaNorm; break;
case CropHandle::TOP: minXY.y += deltaNorm.y; break;
case CropHandle::BOTTOM: maxXY.y += deltaNorm.y; break;
case CropHandle::LEFT: minXY.x += deltaNorm.x; break;
case CropHandle::RIGHT: maxXY.x += deltaNorm.x; break;
case CropHandle::INSIDE: minXY += deltaNorm; maxXY += deltaNorm; break;
case CropHandle::NONE: return; // No change
}
// Ensure min < max temporarily before aspect constraint
if (minXY.x > maxXY.x) ImSwap(minXY.x, maxXY.x);
if (minXY.y > maxXY.y) ImSwap(minXY.y, maxXY.y);
// Apply Aspect Ratio Constraint (if aspectRatio > 0)
if (aspectRatio > 0.0f && handle != CropHandle::INSIDE && handle != CropHandle::NONE)
{
float currentW = maxXY.x - minXY.x;
float currentH = maxXY.y - minXY.y;
if (currentW < 1e-5f) currentW = 1e-5f; // Avoid division by zero
if (currentH < 1e-5f) currentH = 1e-5f;
float currentAspect = currentW / currentH;
float targetAspect = aspectRatio;
// Determine which dimension to adjust based on which handle was moved and aspect delta
// Simplified approach: Adjust height based on width, unless moving top/bottom handles primarily
bool adjustHeight = true;
if (handle == CropHandle::TOP || handle == CropHandle::BOTTOM) {
adjustHeight = false; // Primarily adjust width based on height change
}
if (adjustHeight) { // Adjust height based on width
float targetH = currentW / targetAspect;
float deltaH = targetH - currentH;
// Distribute height change based on handle
if (handle == CropHandle::TOP_LEFT || handle == CropHandle::TOP_RIGHT || handle == CropHandle::TOP) {
minXY.y -= deltaH; // Adjust top edge
} else {
maxXY.y += deltaH; // Adjust bottom edge (or split for side handles?)
// For LEFT/RIGHT handles, could split deltaH: minXY.y -= deltaH*0.5; maxXY.y += deltaH*0.5;
}
} else { // Adjust width based on height
float targetW = currentH * targetAspect;
float deltaW = targetW - currentW;
// Distribute width change based on handle
if (handle == CropHandle::TOP_LEFT || handle == CropHandle::BOTTOM_LEFT || handle == CropHandle::LEFT) {
minXY.x -= deltaW; // Adjust left edge
} else {
maxXY.x += deltaW; // Adjust right edge
// For TOP/BOTTOM handles, could split deltaW: minXY.x -= deltaW*0.5; maxXY.x += deltaW*0.5;
}
}
} // End aspect ratio constraint
// Update the output rectNorm
rectNorm = ImVec4(minXY.x, minXY.y, maxXY.x, maxXY.y);
}
// Helper function to crop AppImage data
bool ApplyCropToImage(AppImage& image, const ImVec4 cropRectNorm) {
if (image.isEmpty()) {
fprintf(stderr, "ApplyCropToImage: Input image is empty.\n");
return false;
}
if (cropRectNorm.x >= cropRectNorm.z || cropRectNorm.y >= cropRectNorm.w) {
fprintf(stderr, "ApplyCropToImage: Invalid crop rectangle (zero or negative size).\n");
return false; // Invalid crop rect
}
// Clamp rect just in case
ImVec4 clampedRect = cropRectNorm;
clampedRect.x = ImClamp(clampedRect.x, 0.0f, 1.0f);
clampedRect.y = ImClamp(clampedRect.y, 0.0f, 1.0f);
clampedRect.z = ImClamp(clampedRect.z, 0.0f, 1.0f);
clampedRect.w = ImClamp(clampedRect.w, 0.0f, 1.0f);
// Calculate pixel coordinates
int srcW = image.getWidth();
int srcH = image.getHeight();
int channels = image.getChannels();
int cropX_px = static_cast<int>(round(clampedRect.x * srcW));
int cropY_px = static_cast<int>(round(clampedRect.y * srcH));
int cropMaxX_px = static_cast<int>(round(clampedRect.z * srcW));
int cropMaxY_px = static_cast<int>(round(clampedRect.w * srcH));
int cropW_px = cropMaxX_px - cropX_px;
int cropH_px = cropMaxY_px - cropY_px;
if (cropW_px <= 0 || cropH_px <= 0) {
fprintf(stderr, "ApplyCropToImage: Resulting crop size is zero or negative (%dx%d).\n", cropW_px, cropH_px);
return false;
}
printf("Applying crop: Start=(%d,%d), Size=(%dx%d)\n", cropX_px, cropY_px, cropW_px, cropH_px);
// Create new image for cropped data
AppImage croppedImage(cropW_px, cropH_px, channels);
if (croppedImage.isEmpty()) {
fprintf(stderr, "ApplyCropToImage: Failed to allocate memory for cropped image.\n");
return false;
}
croppedImage.m_isLinear = image.isLinear(); // Preserve flags
croppedImage.m_colorSpaceName = image.getColorSpaceName();
// TODO: Copy metadata/ICC profile if needed? Cropping usually invalidates some metadata.
const float* srcData = image.getData();
float* dstData = croppedImage.getData();
// Copy pixel data row by row, channel by channel
for (int y_dst = 0; y_dst < cropH_px; ++y_dst) {
int y_src = cropY_px + y_dst;
// Ensure source Y is valid (should be due to clamping/checks, but be safe)
if (y_src < 0 || y_src >= srcH) continue;
// Calculate start pointers for source and destination rows
const float* srcRowStart = srcData + (static_cast<size_t>(y_src) * srcW + cropX_px) * channels;
float* dstRowStart = dstData + (static_cast<size_t>(y_dst) * cropW_px) * channels;
// Copy the entire row (width * channels floats)
std::memcpy(dstRowStart, srcRowStart, static_cast<size_t>(cropW_px) * channels * sizeof(float));
}
// Replace the original image data with the cropped data
// Use std::move if AppImage supports move assignment for efficiency
image = std::move(croppedImage);
printf("Cropped image created successfully (%dx%d).\n", image.getWidth(), image.getHeight());
return true;
}
void InitShaderOperations(const std::string &shaderBasePath)
{
// Clear existing (if any)
g_allOperations.clear();
g_pipeline.activeOperations.clear(); // Also clear the active list in the pipeline
// --- Define Operations ---
// Use unique_ptr for automatic memory management
// Match uniform names to the GLSL shaders
auto whiteBalanceOp = std::make_unique<PipelineOperation>("White Balance");
whiteBalanceOp->shaderProgram = LoadShaderProgramFromFiles(shaderBasePath + "passthrough.vert", shaderBasePath + "white_balance.frag");
if (whiteBalanceOp->shaderProgram)
{
whiteBalanceOp->uniforms["temperatureValue"] = {"temperature"};
whiteBalanceOp->uniforms["tintValue"] = {"tint"};
whiteBalanceOp->temperatureVal = &temperature;
whiteBalanceOp->tintVal = ∭
whiteBalanceOp->FindUniformLocations();
g_allOperations.push_back(std::move(whiteBalanceOp));
printf(" + Loaded White Balance\n");
}
else
printf(" - FAILED White Balance\n");
auto exposureOp = std::make_unique<PipelineOperation>("Exposure");
exposureOp->shaderProgram = LoadShaderProgramFromFiles(shaderBasePath + "passthrough.vert", shaderBasePath + "exposure.frag");
exposureOp->uniforms["exposureValue"] = {"exposureValue"};
exposureOp->exposureVal = &exposure; // Link to global slider variable
exposureOp->FindUniformLocations();
g_allOperations.push_back(std::move(exposureOp));
auto contrastOp = std::make_unique<PipelineOperation>("Contrast");
contrastOp->shaderProgram = LoadShaderProgramFromFiles(shaderBasePath + "passthrough.vert", shaderBasePath + "contrast.frag");
if (contrastOp->shaderProgram)
{
contrastOp->uniforms["contrastValue"] = {"contrastValue"};
contrastOp->contrastVal = &contrast;
contrastOp->FindUniformLocations();
g_allOperations.push_back(std::move(contrastOp));
printf(" + Loaded Contrast\n");
}
else
printf(" - FAILED Contrast\n");
auto highlightsShadowsOp = std::make_unique<PipelineOperation>("Highlights/Shadows");
highlightsShadowsOp->shaderProgram = LoadShaderProgramFromFiles(shaderBasePath + "passthrough.vert", shaderBasePath + "highlights_shadows.frag");
if (highlightsShadowsOp->shaderProgram)
{
highlightsShadowsOp->uniforms["highlightsValue"] = {"highlightsValue"};
highlightsShadowsOp->uniforms["shadowsValue"] = {"shadowsValue"};
highlightsShadowsOp->highlightsVal = &highlights;
highlightsShadowsOp->shadowsVal = &shadows;
highlightsShadowsOp->FindUniformLocations();
g_allOperations.push_back(std::move(highlightsShadowsOp));
printf(" + Loaded Highlights/Shadows\n");
}
else
printf(" - FAILED Highlights/Shadows\n");
auto whiteBlackOp = std::make_unique<PipelineOperation>("Whites/Blacks");
whiteBlackOp->shaderProgram = LoadShaderProgramFromFiles(shaderBasePath + "passthrough.vert", shaderBasePath + "whites_blacks.frag");
if (whiteBlackOp->shaderProgram)
{
whiteBlackOp->uniforms["whitesValue"] = {"whitesValue"};
whiteBlackOp->uniforms["blacksValue"] = {"blacksValue"};
whiteBlackOp->whitesVal = &whites;
whiteBlackOp->blacksVal = &blacks;
whiteBlackOp->FindUniformLocations();
g_allOperations.push_back(std::move(whiteBlackOp));
printf(" + Loaded Whites/Blacks\n");
}
else
printf(" - FAILED Whites/Blacks\n");
auto textureOp = std::make_unique<PipelineOperation>("Texture");
textureOp->shaderProgram = LoadShaderProgramFromFiles(shaderBasePath + "passthrough.vert", shaderBasePath + "texture.frag");
if (textureOp->shaderProgram)
{
textureOp->uniforms["textureValue"] = {"textureValue"};
textureOp->textureVal = &texture;
textureOp->FindUniformLocations();
g_allOperations.push_back(std::move(textureOp));
printf(" + Loaded Texture\n");
}
else
printf(" - FAILED Texture\n");
auto clarityOp = std::make_unique<PipelineOperation>("Clarity");
clarityOp->shaderProgram = LoadShaderProgramFromFiles(shaderBasePath + "passthrough.vert", shaderBasePath + "clarity.frag");
if (clarityOp->shaderProgram)
{
clarityOp->uniforms["clarityValue"] = {"clarityValue"};
clarityOp->clarityVal = &clarity;
clarityOp->FindUniformLocations();
g_allOperations.push_back(std::move(clarityOp));
printf(" + Loaded Clarity\n");
}
else
printf(" - FAILED Clarity\n");
auto dehazeOp = std::make_unique<PipelineOperation>("Dehaze");
dehazeOp->shaderProgram = LoadShaderProgramFromFiles(shaderBasePath + "passthrough.vert", shaderBasePath + "dehaze.frag");
if (dehazeOp->shaderProgram)
{
dehazeOp->uniforms["dehazeValue"] = {"dehazeValue"};
dehazeOp->dehazeVal = &dehaze;
dehazeOp->FindUniformLocations();
g_allOperations.push_back(std::move(dehazeOp));
printf(" + Loaded Dehaze\n");
}
else
printf(" - FAILED Dehaze\n");
auto saturationOp = std::make_unique<PipelineOperation>("Saturation");
saturationOp->shaderProgram = LoadShaderProgramFromFiles(shaderBasePath + "passthrough.vert", shaderBasePath + "saturation.frag");
if (saturationOp->shaderProgram)
{
saturationOp->uniforms["saturationValue"] = {"saturationValue"};
saturationOp->saturationVal = &saturation;
saturationOp->FindUniformLocations();
g_allOperations.push_back(std::move(saturationOp));
printf(" + Loaded Saturation\n");
}
else
printf(" - FAILED Saturation\n");
auto vibranceOp = std::make_unique<PipelineOperation>("Vibrance");
vibranceOp->shaderProgram = LoadShaderProgramFromFiles(shaderBasePath + "passthrough.vert", shaderBasePath + "vibrance.frag");
if (vibranceOp->shaderProgram)
{
vibranceOp->uniforms["vibranceValue"] = {"vibranceValue"};
vibranceOp->vibranceVal = &vibrance;
vibranceOp->FindUniformLocations();
g_allOperations.push_back(std::move(vibranceOp));
printf(" + Loaded Vibrance\n");
}
else
printf(" - FAILED Vibrance\n");
g_pipeline.activeOperations.clear();
for (const auto &op_ptr : g_allOperations)
{
if (op_ptr)
{ // Make sure pointer is valid
g_pipeline.activeOperations.push_back(*op_ptr); // Add a *copy* to the active list
// Re-find locations for the copy (or ensure copy constructor handles it)
g_pipeline.activeOperations.back().FindUniformLocations();
// Copy the pointers to the actual slider variables
g_pipeline.activeOperations.back().exposureVal = op_ptr->exposureVal;
g_pipeline.activeOperations.back().contrastVal = op_ptr->contrastVal;
g_pipeline.activeOperations.back().clarityVal = op_ptr->clarityVal;
g_pipeline.activeOperations.back().highlightsVal = op_ptr->highlightsVal;
g_pipeline.activeOperations.back().shadowsVal = op_ptr->shadowsVal;
g_pipeline.activeOperations.back().whitesVal = op_ptr->whitesVal;
g_pipeline.activeOperations.back().blacksVal = op_ptr->blacksVal;
g_pipeline.activeOperations.back().textureVal = op_ptr->textureVal;
g_pipeline.activeOperations.back().dehazeVal = op_ptr->dehazeVal;
g_pipeline.activeOperations.back().saturationVal = op_ptr->saturationVal;
g_pipeline.activeOperations.back().vibranceVal = op_ptr->vibranceVal;
g_pipeline.activeOperations.back().temperatureVal = op_ptr->temperatureVal;
g_pipeline.activeOperations.back().tintVal = op_ptr->tintVal;
// Set initial enabled state if needed (e.g., all enabled by default)
g_pipeline.activeOperations.back().enabled = true;
}
}
printf("Initialized %zu possible operations. %zu added to default active pipeline.\n",
g_allOperations.size(), g_pipeline.activeOperations.size());
}
// Add this function somewhere accessible, e.g., before main()
void ComputeHistogramGPU(GLuint inputTextureID, int width, int height) {
if (!g_histogramResourcesInitialized || inputTextureID == 0 || width <= 0 || height <= 0) {
// Clear CPU data if not computed
std::fill(g_histogramDataCPU.begin(), g_histogramDataCPU.end(), 0);
g_histogramMaxCount = 1;
printf("Histogram resources not initialized or invalid input. Skipping computation.\n");
return;
}
// 1. Clear the SSBO buffer data to zeros
glBindBuffer(GL_SHADER_STORAGE_BUFFER, g_histogramSSBO);
// Using glBufferSubData might be marginally faster than glClearBufferData if driver optimizes zeroing
// static std::vector<unsigned int> zeros(HISTOGRAM_BUFFER_SIZE, 0); // Create once
// glBufferSubData(GL_SHADER_STORAGE_BUFFER, 0, HISTOGRAM_BUFFER_SIZE * sizeof(unsigned int), zeros.data());
// Or use glClearBufferData (often recommended)
GLuint zero = 0;
glClearBufferData(GL_SHADER_STORAGE_BUFFER, GL_R32UI, GL_RED_INTEGER, GL_UNSIGNED_INT, &zero);
glBindBuffer(GL_SHADER_STORAGE_BUFFER, 0); // Unbind
// 2. Bind resources and dispatch compute shader
glUseProgram(g_histogramComputeShader);
// Bind input texture as image unit 0 (read-only)
// IMPORTANT: Ensure the format matches the compute shader layout qualifier (e.g., rgba8)
// If textureToDisplay is RGBA16F, you'd use layout(rgba16f) in shader
glBindImageTexture(0, inputTextureID, 0, GL_FALSE, 0, GL_READ_ONLY, GL_RGBA16); // Assuming display texture is RGBA8
// Bind SSBO to binding point 1
glBindBufferBase(GL_SHADER_STORAGE_BUFFER, 1, g_histogramSSBO);
// Calculate number of work groups
GLuint workGroupSizeX = 16; // Must match layout in shader
GLuint workGroupSizeY = 16;
GLuint numGroupsX = (width + workGroupSizeX - 1) / workGroupSizeX;
GLuint numGroupsY = (height + workGroupSizeY - 1) / workGroupSizeY;
// Dispatch the compute shader
glDispatchCompute(numGroupsX, numGroupsY, 1);
// 3. Synchronization: Ensure compute shader writes finish before CPU reads buffer
// Use a memory barrier on the SSBO writes
glMemoryBarrier(GL_SHADER_STORAGE_BARRIER_BIT);
// Unbind resources (optional here, but good practice)
glBindBufferBase(GL_SHADER_STORAGE_BUFFER, 1, 0);
glBindImageTexture(0, 0, 0, GL_FALSE, 0, GL_READ_ONLY, GL_RGBA16);
glUseProgram(0);
// 4. Read histogram data back from SSBO to CPU vector
glBindBuffer(GL_SHADER_STORAGE_BUFFER, g_histogramSSBO);
glGetBufferSubData(GL_SHADER_STORAGE_BUFFER, 0, HISTOGRAM_BUFFER_SIZE * sizeof(unsigned int), g_histogramDataCPU.data());
glBindBuffer(GL_SHADER_STORAGE_BUFFER, 0); // Unbind
// 5. Find the maximum count for scaling the plot (optional, can be capped)
g_histogramMaxCount = 255; // Reset to 255 (prevents div by zero)
for (unsigned int count : g_histogramDataCPU) {
if (count > g_histogramMaxCount) {
g_histogramMaxCount = count;
}
}
// Optional: Cap max count to prevent extreme peaks from flattening the rest
// unsigned int capThreshold = (width * height) / 50; // e.g., cap at 2% of pixels
// g_histogramMaxCount = std::min(g_histogramMaxCount, capThreshold);
// if (g_histogramMaxCount == 0) g_histogramMaxCount = 1; // Ensure not zero after capping
GLenum err = glGetError();
if (err != GL_NO_ERROR) {
fprintf(stderr, "OpenGL Error during histogram computation/readback: %u\n", err);
// Optionally clear CPU data on error
std::fill(g_histogramDataCPU.begin(), g_histogramDataCPU.end(), 0);
g_histogramMaxCount = 1;
printf("Histogram computation failed. Data cleared.\n");
}
else {
printf("Histogram computed. Max count: %u\n", g_histogramMaxCount);
}
}
// Add this function somewhere accessible, e.g., before main()
void DrawHistogramWidget(const char* widgetId, ImVec2 graphSize) {
if (g_histogramDataCPU.empty() || g_histogramMaxCount <= 1) { // Check if data is valid
if (g_histogramDataCPU.empty()) {
ImGui::Text("Histogram data not initialized.");
} else {
ImGui::Text("Histogram data is empty or invalid.");
}
if (g_histogramMaxCount <= 1) {
ImGui::Text("Histogram max count is invalid.");
}
ImGui::Text("Histogram data not available.");
return;
}
ImGui::PushID(widgetId); // Isolate widget IDs
ImDrawList* drawList = ImGui::GetWindowDrawList();
const ImVec2 widgetPos = ImGui::GetCursorScreenPos();
// Determine actual graph size (negative values mean use available space)
if (graphSize.x <= 0.0f) graphSize.x = ImGui::GetContentRegionAvail().x;
if (graphSize.y <= 0.0f) graphSize.y = 100.0f; // Default height
// Draw background for the histogram area (optional)
drawList->AddRectFilled(widgetPos, widgetPos + graphSize, IM_COL32(30, 30, 30, 200));
// Calculate scaling factors
float barWidth = graphSize.x / float(NUM_HISTOGRAM_BINS);
float scaleY = graphSize.y / float(g_histogramMaxCount); // Scale based on max count
// Define colors (with some transparency for overlap visibility)
const ImU32 colR = IM_COL32(255, 0, 0, 180);
const ImU32 colG = IM_COL32(0, 255, 0, 180);
const ImU32 colB = IM_COL32(0, 0, 255, 180);
// Draw the histogram bars (R, G, B)
for (int i = 0; i < NUM_HISTOGRAM_BINS; ++i) {
// Get heights (clamped to graph size)
float hR = ImMin(float(g_histogramDataCPU[i]) * scaleY, graphSize.y);
float hG = ImMin(float(g_histogramDataCPU[i + NUM_HISTOGRAM_BINS]) * scaleY, graphSize.y);
float hB = ImMin(float(g_histogramDataCPU[i + NUM_HISTOGRAM_BINS * 2]) * scaleY, graphSize.y);
// Calculate bar positions
float x0 = widgetPos.x + float(i) * barWidth;
float x1 = x0 + barWidth; // Use lines if bars are too thin, or thin rects
float yBase = widgetPos.y + graphSize.y; // Bottom of the graph
// Draw lines or thin rectangles (lines are often better for dense histograms)
// Overlap/Blend: Draw B, then G, then R so Red is most prominent? Or use alpha blending.
if (hB > 0) drawList->AddLine(ImVec2(x0 + barWidth * 0.5f, yBase), ImVec2(x0 + barWidth * 0.5f, yBase - hB), colB, 1.0f);
if (hG > 0) drawList->AddLine(ImVec2(x0 + barWidth * 0.5f, yBase), ImVec2(x0 + barWidth * 0.5f, yBase - hG), colG, 1.0f);
if (hR > 0) drawList->AddLine(ImVec2(x0 + barWidth * 0.5f, yBase), ImVec2(x0 + barWidth * 0.5f, yBase - hR), colR, 1.0f);
// --- Alternative: Rectangles (might overlap heavily) ---
// if (hB > 0) drawList->AddRectFilled(ImVec2(x0, yBase - hB), ImVec2(x1, yBase), colB);
// if (hG > 0) drawList->AddRectFilled(ImVec2(x0, yBase - hG), ImVec2(x1, yBase), colG);
// if (hR > 0) drawList->AddRectFilled(ImVec2(x0, yBase - hR), ImVec2(x1, yBase), colR);
}
// Draw border around the histogram area (optional)
drawList->AddRect(widgetPos, widgetPos + graphSize, IM_COL32(150, 150, 150, 255));
// Advance cursor past the histogram widget area
ImGui::Dummy(graphSize);
ImGui::PopID(); // Restore ID stack
}
// Main code
int main(int, char **)
{
// Setup SDL
if (SDL_Init(SDL_INIT_VIDEO | SDL_INIT_TIMER | SDL_INIT_GAMECONTROLLER) != 0)
{
printf("Error: %s\n", SDL_GetError());
return -1;
}
// Decide GL+GLSL versions
#if defined(IMGUI_IMPL_OPENGL_ES2)
// GL ES 2.0 + GLSL 100 (WebGL 1.0)
const char *glsl_version = "#version 100";
SDL_GL_SetAttribute(SDL_GL_CONTEXT_FLAGS, 0);
SDL_GL_SetAttribute(SDL_GL_CONTEXT_PROFILE_MASK, SDL_GL_CONTEXT_PROFILE_ES);
SDL_GL_SetAttribute(SDL_GL_CONTEXT_MAJOR_VERSION, 2);
SDL_GL_SetAttribute(SDL_GL_CONTEXT_MINOR_VERSION, 0);
#elif defined(IMGUI_IMPL_OPENGL_ES3)
// GL ES 3.0 + GLSL 300 es (WebGL 2.0)
const char *glsl_version = "#version 300 es";
SDL_GL_SetAttribute(SDL_GL_CONTEXT_FLAGS, 0);
SDL_GL_SetAttribute(SDL_GL_CONTEXT_PROFILE_MASK, SDL_GL_CONTEXT_PROFILE_ES);
SDL_GL_SetAttribute(SDL_GL_CONTEXT_MAJOR_VERSION, 3);
SDL_GL_SetAttribute(SDL_GL_CONTEXT_MINOR_VERSION, 0);
#elif defined(__APPLE__)
// GL 3.2 Core + GLSL 150
const char *glsl_version = "#version 150";
SDL_GL_SetAttribute(SDL_GL_CONTEXT_FLAGS, SDL_GL_CONTEXT_FORWARD_COMPATIBLE_FLAG); // Always required on Mac
SDL_GL_SetAttribute(SDL_GL_CONTEXT_PROFILE_MASK, SDL_GL_CONTEXT_PROFILE_CORE);
SDL_GL_SetAttribute(SDL_GL_CONTEXT_MAJOR_VERSION, 3);
SDL_GL_SetAttribute(SDL_GL_CONTEXT_MINOR_VERSION, 2);
#else
// GL 3.0 + GLSL 130
const char *glsl_version = "#version 130";
SDL_GL_SetAttribute(SDL_GL_CONTEXT_FLAGS, 0);
SDL_GL_SetAttribute(SDL_GL_CONTEXT_PROFILE_MASK, SDL_GL_CONTEXT_PROFILE_CORE);
SDL_GL_SetAttribute(SDL_GL_CONTEXT_MAJOR_VERSION, 3);
SDL_GL_SetAttribute(SDL_GL_CONTEXT_MINOR_VERSION, 0);
#endif
// From 2.0.18: Enable native IME.
#ifdef SDL_HINT_IME_SHOW_UI
SDL_SetHint(SDL_HINT_IME_SHOW_UI, "1");
#endif
// Create window with graphics context
SDL_GL_SetAttribute(SDL_GL_DOUBLEBUFFER, 1);
SDL_GL_SetAttribute(SDL_GL_DEPTH_SIZE, 24);
SDL_GL_SetAttribute(SDL_GL_STENCIL_SIZE, 8);
SDL_WindowFlags window_flags = (SDL_WindowFlags)(SDL_WINDOW_OPENGL | SDL_WINDOW_RESIZABLE | SDL_WINDOW_ALLOW_HIGHDPI);
SDL_Window *window = SDL_CreateWindow("tedit", SDL_WINDOWPOS_CENTERED, SDL_WINDOWPOS_CENTERED, 1280, 720, window_flags);
if (window == nullptr)
{
printf("Error: SDL_CreateWindow(): %s\n", SDL_GetError());
return -1;
}
SDL_GLContext gl_context = SDL_GL_CreateContext(window);
if (gl_context == nullptr)
{
printf("Error: SDL_GL_CreateContext(): %s\n", SDL_GetError());
return -1;
}
SDL_GL_MakeCurrent(window, gl_context);
SDL_GL_SetSwapInterval(1); // Enable vsync
glewExperimental = GL_TRUE; // Needed for core profile
GLenum err = glewInit();
if (err != GLEW_OK)
{
fprintf(stderr, "Error: %s\n", glewGetErrorString(err));
return -1;
}
// Setup Dear ImGui context
IMGUI_CHECKVERSION();
ImGui::CreateContext();
ImGuiIO &io = ImGui::GetIO();
(void)io;
io.ConfigFlags |= ImGuiConfigFlags_NavEnableKeyboard; // Enable Keyboard Controls
io.ConfigFlags |= ImGuiConfigFlags_NavEnableGamepad; // Enable Gamepad Controls
io.ConfigFlags |= ImGuiConfigFlags_DockingEnable; // Enable Docking
// io.ConfigFlags |= ImGuiConfigFlags_ViewportsEnable; // Enable Multi-Viewport / Platform Windows
// io.ConfigViewportsNoAutoMerge = true;
// io.ConfigViewportsNoTaskBarIcon = true;
// Setup Dear ImGui style
ImGui::StyleColorsDark();
// ImGui::StyleColorsLight();
// When viewports are enabled we tweak WindowRounding/WindowBg so platform windows can look identical to regular ones.
ImGuiStyle &style = ImGui::GetStyle();
if (io.ConfigFlags & ImGuiConfigFlags_ViewportsEnable)
{
style.WindowRounding = 0.0f;
style.Colors[ImGuiCol_WindowBg].w = 1.0f;
}
// Setup Platform/Renderer backends
ImGui_ImplSDL2_InitForOpenGL(window, gl_context);
ImGui_ImplOpenGL3_Init(glsl_version);
// Our state
ImVec4 clear_color = ImVec4(0.45f, 0.55f, 0.60f, 1.00f);
g_openFileDialog.SetTitle("Open Image File");
// Add common image formats and typical RAW formats
g_openFileDialog.SetTypeFilters({
".jpg", ".jpeg", ".png", ".tif", ".tiff", // Standard formats
".arw", ".cr2", ".cr3", ".nef", ".dng", ".orf", ".raf", ".rw2", // Common RAW
".*" // Allow any file as fallback
});
g_exportSaveFileDialog.SetTitle("Export Image As");
// Type filters for saving are less critical as we force the extension later,
// but can be helpful for user navigation. Let's set a default.
g_exportSaveFileDialog.SetTypeFilters({".jpg", ".png", ".tif"});
AppImage g_loadedImage; // Your loaded image data
bool g_imageIsLoaded = false;
g_processedTextureId = 0; // Initialize processed texture ID
printf("Initializing image processing pipeline...\n");
g_pipeline.Init("shaders/"); // Assuming shaders are in shaders/ subdir
ImGuiTexInspect::ImplOpenGL3_Init(); // Or DirectX 11 equivalent (check your chosen backend header file)
ImGuiTexInspect::Init();
ImGuiTexInspect::CreateContext();
InitShaderOperations("shaders/"); // Initialize shader operations
if (!InitHistogramResources("shaders/")) {
// Handle error - maybe disable histogram feature
fprintf(stderr, "Histogram initialization failed, feature disabled.\n");
}
// Main loop
bool done = false;
#ifdef __EMSCRIPTEN__
// For an Emscripten build we are disabling file-system access, so let's not attempt to do a fopen() of the imgui.ini file.
// You may manually call LoadIniSettingsFromMemory() to load settings from your own storage.
io.IniFilename = nullptr;
EMSCRIPTEN_MAINLOOP_BEGIN
#else
while (!done)
#endif
{
// Poll and handle events (inputs, window resize, etc.)
// You can read the io.WantCaptureMouse, io.WantCaptureKeyboard flags to tell if dear imgui wants to use your inputs.
// - When io.WantCaptureMouse is true, do not dispatch mouse input data to your main application, or clear/overwrite your copy of the mouse data.
// - When io.WantCaptureKeyboard is true, do not dispatch keyboard input data to your main application, or clear/overwrite your copy of the keyboard data.
// Generally you may always pass all inputs to dear imgui, and hide them from your application based on those two flags.
SDL_Event event;
while (SDL_PollEvent(&event))
{
ImGui_ImplSDL2_ProcessEvent(&event);
if (event.type == SDL_QUIT)
done = true;
if (event.type == SDL_WINDOWEVENT && event.window.event == SDL_WINDOWEVENT_CLOSE && event.window.windowID == SDL_GetWindowID(window))
done = true;
}
if (SDL_GetWindowFlags(window) & SDL_WINDOW_MINIMIZED)
{
SDL_Delay(10);
continue;
}
// Start the Dear ImGui frame
ImGui_ImplOpenGL3_NewFrame();
ImGui_ImplSDL2_NewFrame();
ImGui::NewFrame();
GLuint textureToDisplay = 0; // Use a local var for clarity
GLuint textureToSave = 0; // Texture ID holding final linear data for saving
if (g_imageIsLoaded && g_loadedImage.m_textureId != 0)
{
g_pipeline.inputColorSpace = g_inputColorSpace;
g_pipeline.outputColorSpace = g_outputColorSpace;
// Modify pipeline processing slightly to get both display and save textures
// Add a flag or method to control output conversion for saving
textureToSave = g_pipeline.ProcessImage(
g_loadedImage.m_textureId,
g_loadedImage.getWidth(),
g_loadedImage.getHeight(),
false // <-- Add argument: bool applyOutputConversion = true
);
textureToDisplay = g_pipeline.ProcessImage(
g_loadedImage.m_textureId,
g_loadedImage.getWidth(),
g_loadedImage.getHeight(),
true // Apply conversion for display
);
// If the pipeline wasn't modified, textureToSave might need extra work
}
else
{
textureToDisplay = 0;
textureToSave = 0;
}
// --- Menu Bar ---
if (ImGui::BeginMainMenuBar())
{
if (ImGui::BeginMenu("File"))
{
if (ImGui::MenuItem("Open...", "Ctrl+O"))
{
g_openFileDialog.Open();
}
// Disable Export if no image is loaded
if (ImGui::MenuItem("Export...", "Ctrl+E", false, g_imageIsLoaded))
{
g_exportErrorMsg = ""; // Clear previous errors
g_showExportWindow = true; // <<< Set the flag to show the window
}
ImGui::Separator();
if (ImGui::MenuItem("Exit"))
{
done = true; // Simple exit for now
}
ImGui::EndMenu();
}
// ... other menus ...
ImGui::EndMainMenuBar();
}
// --- File Dialog Display & Handling ---
g_openFileDialog.Display();
g_exportSaveFileDialog.Display();
if (g_openFileDialog.HasSelected())
{
std::string selectedPath = g_openFileDialog.GetSelected().string();
g_openFileDialog.ClearSelected();
printf("Opening file: %s\n", selectedPath.c_str());
// --- Load the selected image ---
std::optional<AppImage> imgOpt = loadImage(selectedPath);
if (imgOpt)
{
// If an image was already loaded, clean up its texture first
if (g_loadedImage.m_textureId != 0)
{
glDeleteTextures(1, &g_loadedImage.m_textureId);
g_loadedImage.m_textureId = 0;
}
// Clean up pipeline resources (FBOs/Textures) before loading new texture
g_pipeline.ResetResources(); // <<< NEED TO ADD THIS METHOD
g_loadedImage = std::move(*imgOpt);
printf("Image loaded (%dx%d, %d channels, Linear:%s)\n",
g_loadedImage.getWidth(), g_loadedImage.getHeight(), g_loadedImage.getChannels(), g_loadedImage.isLinear() ? "Yes" : "No");
if (loadImageTexture(g_loadedImage))
{
g_imageIsLoaded = true;
g_currentFilePath = selectedPath; // Store path
printf("Float texture created successfully (ID: %u).\n", g_loadedImage.m_textureId);
// Maybe reset sliders/pipeline state? Optional.
}
else
{
g_imageIsLoaded = false;
g_currentFilePath = "";
fprintf(stderr, "Failed to load image into GL texture.\n");
// TODO: Show error to user (e.g., modal popup)
}
}
else
{
g_imageIsLoaded = false;
g_currentFilePath = "";
fprintf(stderr, "Failed to load image file: %s\n", selectedPath.c_str());
// TODO: Show error to user
}
}
if (g_showExportWindow) // <<< Only attempt to draw if flag is true
{
// Optional: Center the window the first time it appears
ImGui::SetNextWindowSize(ImVec2(400, 0), ImGuiCond_Appearing); // Auto-height
ImVec2 center = ImGui::GetMainViewport()->GetCenter();
ImGui::SetNextWindowPos(center, ImGuiCond_Appearing, ImVec2(0.5f, 0.5f));
// Begin a standard window. Pass &g_showExportWindow to enable the 'X' button.
if (ImGui::Begin("Export Settings", &g_showExportWindow, ImGuiWindowFlags_AlwaysAutoResize))
{
ImGui::Text("Choose Export Format and Settings:");
ImGui::Separator();
// --- Format Selection ---
ImGui::Text("Format:");
ImGui::SameLine();
// ... (Combo box logic for g_exportFormat remains the same) ...
const char *formats[] = {"JPEG", "PNG (8-bit)", "PNG (16-bit)", "TIFF (8-bit)", "TIFF (16-bit)"};
int currentFormatIndex = 0;
switch (g_exportFormat)
{ /* ... map g_exportFormat to index ... */
}
if (ImGui::Combo("##ExportFormat", ¤tFormatIndex, formats, IM_ARRAYSIZE(formats)))
{
switch (currentFormatIndex)
{ /* ... map index back to g_exportFormat ... */
}
g_exportErrorMsg = "";
}
// --- Format Specific Options ---
if (g_exportFormat == ImageSaveFormat::JPEG)
{
ImGui::SliderInt("Quality", &g_exportQuality, 1, 100);
}
else
{
ImGui::Dummy(ImVec2(0.0f, ImGui::GetFrameHeightWithSpacing())); // Keep consistent height
}
ImGui::Separator();
// --- Display Error Messages ---
if (!g_exportErrorMsg.empty())
{
ImGui::PushStyleColor(ImGuiCol_Text, ImVec4(1.0f, 0.2f, 0.2f, 1.0f));
ImGui::TextWrapped("Error: %s", g_exportErrorMsg.c_str());
ImGui::PopStyleColor();
ImGui::Separator();
}
// --- Action Buttons ---
if (ImGui::Button("Save As...", ImVec2(120, 0)))
{
// ... (Logic to set default name/path and call g_exportSaveFileDialog.Open() remains the same) ...
std::filesystem::path currentPath(g_currentFilePath);
std::string defaultName = currentPath.stem().string() + "_edited";
g_exportSaveFileDialog.SetPwd(currentPath.parent_path());
// g_exportSaveFileDialog.SetInputName(defaultName); // If supported
g_exportSaveFileDialog.Open();
}
ImGui::SameLine();
// No need for an explicit Cancel button if the 'X' works, but can keep it:
if (ImGui::Button("Cancel", ImVec2(120, 0)))
{
g_showExportWindow = false; // Close the window by setting the flag
}
} // Matches ImGui::Begin("Export Settings",...)
ImGui::End(); // IMPORTANT: Always call End() for Begin()
} // End of if(g_showExportWindow)
// --- Handle Export Save Dialog Selection ---
if (g_exportSaveFileDialog.HasSelected())
{
// ... (Your existing logic to get path, correct extension) ...
std::filesystem::path savePathFs = g_exportSaveFileDialog.GetSelected();
g_exportSaveFileDialog.ClearSelected();
std::string savePath = savePathFs.string();
// ... (Ensure/correct extension logic) ...
// --- Get Processed Image Data & Save ---
printf("Attempting to save to: %s\n", savePath.c_str());
g_exportErrorMsg = "";
if (textureToSave != 0)
{
AppImage exportImageRGBA; // Name it clearly - it holds RGBA data
printf("Reading back texture ID %u for saving...\n", textureToSave);
if (ReadTextureToAppImage(textureToSave, g_loadedImage.getWidth(), g_loadedImage.getHeight(), exportImageRGBA))
{
printf("Texture readback successful, saving...\n");
// <<< --- ADD CONVERSION LOGIC HERE --- >>>
bool saveResult = false;
if (g_exportFormat == ImageSaveFormat::JPEG)
{
// JPEG cannot handle 4 channels, convert to 3 (RGB)
if (exportImageRGBA.getChannels() == 4)
{
printf("JPEG selected: Converting 4-channel RGBA to 3-channel RGB...\n");
AppImage exportImageRGB(exportImageRGBA.getWidth(), exportImageRGBA.getHeight(), 3);
// Check allocation success? (Should be fine if RGBA worked)
const float *rgbaData = exportImageRGBA.getData();
float *rgbData = exportImageRGB.getData();
size_t numPixels = exportImageRGBA.getWidth() * exportImageRGBA.getHeight();
for (size_t i = 0; i < numPixels; ++i)
{
// Copy R, G, B; discard A
rgbData[i * 3 + 0] = rgbaData[i * 4 + 0]; // R
rgbData[i * 3 + 1] = rgbaData[i * 4 + 1]; // G
rgbData[i * 3 + 2] = rgbaData[i * 4 + 2]; // B
}
exportImageRGB.m_isLinear = exportImageRGBA.isLinear(); // Preserve linearity flag
exportImageRGB.m_colorSpaceName = exportImageRGBA.getColorSpaceName(); // Preserve colorspace info
printf("Conversion complete, saving RGB data...\n");
saveResult = saveImage(exportImageRGB, savePath, g_exportFormat, g_exportQuality);
}
else
{
// Source wasn't 4 channels? Unexpected, but save it directly.
printf("Warning: Expected 4 channels for JPEG conversion, got %d. Saving directly...\n", exportImageRGBA.getChannels());
saveResult = saveImage(exportImageRGBA, savePath, g_exportFormat, g_exportQuality);
}
}
else
{
// Format is PNG or TIFF, which should handle 4 channels (or 1/3)
printf("Saving image with original channels (%d) for PNG/TIFF...\n", exportImageRGBA.getChannels());
saveResult = saveImage(exportImageRGBA, savePath, g_exportFormat, g_exportQuality);
}
// <<< --- END CONVERSION LOGIC --- >>>
if (saveResult)
{
printf("Image saved successfully!\n");
g_showExportWindow = false; // <<< Close the settings window on success
}
else
{
fprintf(stderr, "Failed to save image.\n");
g_exportErrorMsg = "Failed to save image data to file.";
}
}
else
{
fprintf(stderr, "Failed to read back texture data from GPU.\n");
g_exportErrorMsg = "Failed to read processed image data from GPU.";
}
}
else
{
fprintf(stderr, "Cannot save: Invalid processed texture ID.\n");
g_exportErrorMsg = "No valid processed image data available to save.";
}
}
static bool use_dockspace = true;
if (use_dockspace)
{
ImGuiViewport *viewport = ImGui::GetMainViewport();
ImGuiID dockspace_id = ImGui::GetID("MyDockSpace");
// Use DockSpaceOverViewport instead of creating a manual window
// Set the viewport size for the dockspace node. This is important.
ImGui::SetNextWindowPos(viewport->WorkPos);
ImGui::SetNextWindowSize(viewport->WorkSize);
ImGui::SetNextWindowViewport(viewport->ID);
// Use PassthruCentralNode to make the central node background transparent
// so the ImGui default background shows until a window is docked there.
ImGuiDockNodeFlags dockspace_flags = ImGuiDockNodeFlags_PassthruCentralNode;
// We wrap the DockSpace call in a window that doesn't really draw anything itself,
// but is required by the DockBuilder mechanism to target the space.
// Make it borderless, no title, etc.
ImGuiWindowFlags host_window_flags = 0;
host_window_flags |= ImGuiWindowFlags_NoTitleBar | ImGuiWindowFlags_NoCollapse | ImGuiWindowFlags_NoResize | ImGuiWindowFlags_NoMove;
host_window_flags |= ImGuiWindowFlags_NoBringToFrontOnFocus | ImGuiWindowFlags_NoNavFocus;
host_window_flags |= ImGuiWindowFlags_NoBackground; // Make the host window transparent
ImGui::PushStyleVar(ImGuiStyleVar_WindowRounding, 0.0f);
ImGui::PushStyleVar(ImGuiStyleVar_WindowBorderSize, 0.0f);
ImGui::PushStyleVar(ImGuiStyleVar_WindowPadding, ImVec2(0.0f, 0.0f));
ImGui::Begin("DockSpaceWindowHost", nullptr, host_window_flags); // No bool* needed
ImGui::PopStyleVar(3);
// Create the actual dockspace area.
ImGui::DockSpace(dockspace_id, ImVec2(0.0f, 0.0f), dockspace_flags);
ImGui::End(); // End the transparent host window
// --- DockBuilder setup (runs once) ---
// This logic remains the same, targeting the dockspace_id
// Use DockBuilderGetNode()->IsEmpty() as a robust check for first time setup or reset.
ImGuiDockNode *centralNode = ImGui::DockBuilderGetNode(dockspace_id);
if (centralNode == nullptr || centralNode->IsEmpty())
{
printf("DockBuilder: Setting up initial layout for DockID %u\n", dockspace_id);
ImGui::DockBuilderRemoveNode(dockspace_id); // Clear out any previous state
ImGui::DockBuilderAddNode(dockspace_id, ImGuiDockNodeFlags_DockSpace);
ImGui::DockBuilderSetNodeSize(dockspace_id, viewport->Size); // Set the size for the root node
ImGuiID dock_main_id = dockspace_id; // This is the ID of the node just added
ImGuiID dock_right_id, dock_left_id, dock_center_id;
// Split right first (Edit Panel)
ImGui::DockBuilderSplitNode(dock_main_id, ImGuiDir_Right, 0.25f, &dock_right_id, &dock_main_id);
// Then split left from the remaining main area (Exif Panel)
ImGui::DockBuilderSplitNode(dock_main_id, ImGuiDir_Left, 0.25f, &dock_left_id, &dock_center_id); // dock_center_id is the final remaining central node
// Dock the windows into the nodes
ImGui::DockBuilderDockWindow("Image Exif", dock_left_id);
ImGui::DockBuilderDockWindow("Edit Image", dock_right_id);
ImGui::DockBuilderDockWindow("Image View", dock_center_id); // Dock image view into the center
ImGui::DockBuilderFinish(dockspace_id);
printf("DockBuilder: Layout finished.\n");
}
// --- End DockBuilder setup ---
// --- Now Begin the actual windows that get docked ---
// These calls are now *outside* any manual container window.
// They will find their place in the dockspace based on the DockBuilder setup or user interaction.
// "Image View" window
ImGui::Begin("Image View");
// Display the texture that HAS the output conversion applied
ImVec2 imageWidgetTopLeftScreen = ImGui::GetCursorScreenPos(); // Position BEFORE the inspector panel
ImVec2 availableContentSize = ImGui::GetContentRegionAvail(); // Size available FOR the inspector panel
GLuint displayTexId = textureToDisplay; // Use the display texture ID
if (displayTexId != 0)
{
ComputeHistogramGPU(textureToDisplay, g_loadedImage.getWidth(), g_loadedImage.getHeight());
// Assume ImGuiTexInspect fills available space. This might need adjustment.
ImVec2 displaySize = availableContentSize;
float displayAspect = displaySize.x / displaySize.y;
float imageAspect = float(g_loadedImage.getWidth()) / float(g_loadedImage.getHeight());
ImVec2 imageDisplaySize; // Actual size the image occupies on screen (letterboxed/pillarboxed)
ImVec2 imageDisplayOffset = ImVec2(0, 0); // Offset within the widget area due to letterboxing
if (displayAspect > imageAspect)
{ // Display is wider than image -> letterbox (bars top/bottom)
imageDisplaySize.y = displaySize.y;
imageDisplaySize.x = imageDisplaySize.y * imageAspect;
imageDisplayOffset.x = (displaySize.x - imageDisplaySize.x) * 0.5f;
}
else
{ // Display is taller than image (or same aspect) -> pillarbox (bars left/right)
imageDisplaySize.x = displaySize.x;
imageDisplaySize.y = imageDisplaySize.x / imageAspect;
imageDisplayOffset.y = (displaySize.y - imageDisplaySize.y) * 0.5f;
}
ImVec2 imageTopLeftScreen = imageWidgetTopLeftScreen + imageDisplayOffset;
ImVec2 imageBottomRightScreen = imageTopLeftScreen + imageDisplaySize;
// Use textureToDisplay here
ImGuiTexInspect::BeginInspectorPanel("Image Inspector", (ImTextureID)(intptr_t)displayTexId,
ImVec2(g_loadedImage.m_width, g_loadedImage.m_height),
ImGuiTexInspect::InspectorFlags_NoTooltip |
ImGuiTexInspect::InspectorFlags_NoGrid |
ImGuiTexInspect::InspectorFlags_NoForceFilterNearest,
ImGuiTexInspect::SizeIncludingBorder(availableContentSize));
ImGuiTexInspect::EndInspectorPanel();
// --- Draw Crop Overlay If Active ---
if (g_cropActive && g_imageIsLoaded)
{
ImDrawList *drawList = ImGui::GetForegroundDrawList();
ImGuiIO &io = ImGui::GetIO();
ImVec2 mousePos = io.MousePos;
// Calculate screen coords of the current crop rectangle
ImVec2 cropMinScreen = imageTopLeftScreen + ImVec2(g_cropRectNorm.x, g_cropRectNorm.y) * imageDisplaySize;
ImVec2 cropMaxScreen = imageTopLeftScreen + ImVec2(g_cropRectNorm.z, g_cropRectNorm.w) * imageDisplaySize;
ImVec2 cropSizeScreen = cropMaxScreen - cropMinScreen;
// Define handle size and interaction margin
float handleScreenSize = 8.0f;
float handleInteractionMargin = handleScreenSize * 1.5f; // Larger click area
ImU32 colRect = IM_COL32(255, 255, 255, 200); // White rectangle
ImU32 colHandle = IM_COL32(255, 255, 255, 255); // Solid white handle
ImU32 colGrid = IM_COL32(200, 200, 200, 100); // Faint grid lines
ImU32 colHover = IM_COL32(255, 255, 0, 255); // Yellow highlight
// --- Define Handle Positions (screen coordinates) ---
// Corners
ImVec2 tl = cropMinScreen;
ImVec2 tr = ImVec2(cropMaxScreen.x, cropMinScreen.y);
ImVec2 bl = ImVec2(cropMinScreen.x, cropMaxScreen.y);
ImVec2 br = cropMaxScreen;
// Mid-edges
ImVec2 tm = ImVec2((tl.x + tr.x) * 0.5f, tl.y);
ImVec2 bm = ImVec2((bl.x + br.x) * 0.5f, bl.y);
ImVec2 lm = ImVec2(tl.x, (tl.y + bl.y) * 0.5f);
ImVec2 rm = ImVec2(tr.x, (tr.y + br.y) * 0.5f);
// Handle definitions for hit testing and drawing
struct HandleDef
{
CropHandle id;
ImVec2 pos;
};
HandleDef handles[] = {
{CropHandle::TOP_LEFT, tl}, {CropHandle::TOP_RIGHT, tr}, {CropHandle::BOTTOM_LEFT, bl}, {CropHandle::BOTTOM_RIGHT, br}, {CropHandle::TOP, tm}, {CropHandle::BOTTOM, bm}, {CropHandle::LEFT, lm}, {CropHandle::RIGHT, rm}};
// --- Interaction Handling ---
bool isHoveringAnyHandle = false;
CropHandle hoveredHandle = CropHandle::NONE;
// Only interact if window is hovered
if (ImGui::IsWindowHovered()) // ImGuiHoveredFlags_AllowWhenBlockedByActiveItem might also be needed
{
// Check handles first (higher priority than inside rect)
for (const auto &h : handles)
{
ImRect handleRect(h.pos - ImVec2(handleInteractionMargin, handleInteractionMargin),
h.pos + ImVec2(handleInteractionMargin, handleInteractionMargin));
if (handleRect.Contains(mousePos))
{
hoveredHandle = h.id;
isHoveringAnyHandle = true;
break;
}
}
// Check inside rect if no handle hovered
ImRect insideRect(cropMinScreen, cropMaxScreen);
if (!isHoveringAnyHandle && insideRect.Contains(mousePos))
{
hoveredHandle = CropHandle::INSIDE;
}
// Mouse Down: Start dragging
if (hoveredHandle != CropHandle::NONE && ImGui::IsMouseClicked(ImGuiMouseButton_Left))
{
g_activeCropHandle = hoveredHandle;
g_isDraggingCrop = true;
g_dragStartMousePos = mousePos;
g_cropRectNormInitial = g_cropRectNorm; // Store state at drag start
printf("Started dragging handle: %d\n", (int)g_activeCropHandle);
}
} // End IsWindowHovered check
// Mouse Drag: Update crop rectangle
if (g_isDraggingCrop && ImGui::IsMouseDragging(ImGuiMouseButton_Left))
{
ImVec2 mouseDeltaScreen = mousePos - g_dragStartMousePos;
// Convert delta to normalized image coordinates
ImVec2 mouseDeltaNorm = ImVec2(0, 0);
if (imageDisplaySize.x > 1e-3 && imageDisplaySize.y > 1e-3)
{ // Avoid division by zero
mouseDeltaNorm = mouseDeltaScreen / imageDisplaySize;
}
// Update g_cropRectNorm based on handle and delta
// Store temporary rect to apply constraints later
ImVec4 tempRect = g_cropRectNormInitial; // Work from initial state + delta
// --- Update Logic (Needs Aspect Ratio Constraint Integration) ---
// [This part is complex - Simplified version below]
UpdateCropRect(tempRect, g_activeCropHandle, mouseDeltaNorm, g_cropAspectRatio);
// Clamp final rect to 0-1 range and ensure min < max
tempRect.x = ImClamp(tempRect.x, 0.0f, 1.0f);
tempRect.y = ImClamp(tempRect.y, 0.0f, 1.0f);
tempRect.z = ImClamp(tempRect.z, 0.0f, 1.0f);
tempRect.w = ImClamp(tempRect.w, 0.0f, 1.0f);
if (tempRect.x > tempRect.z)
ImSwap(tempRect.x, tempRect.z);
if (tempRect.y > tempRect.w)
ImSwap(tempRect.y, tempRect.w);
// Prevent zero size rect? (Optional)
// float minSizeNorm = 0.01f; // e.g., 1% minimum size
// if (tempRect.z - tempRect.x < minSizeNorm) tempRect.z = tempRect.x + minSizeNorm;
// if (tempRect.w - tempRect.y < minSizeNorm) tempRect.w = tempRect.y + minSizeNorm;
g_cropRectNorm = tempRect; // Update the actual state
}
else if (g_isDraggingCrop && ImGui::IsMouseReleased(ImGuiMouseButton_Left))
{
// Mouse Release: Stop dragging
g_isDraggingCrop = false;
g_activeCropHandle = CropHandle::NONE;
printf("Stopped dragging crop.\n");
}
// --- Drawing ---
// Dimming overlay (optional) - Draw 4 rects outside the crop area
drawList->AddRectFilled(imageTopLeftScreen, ImVec2(cropMinScreen.x, imageBottomRightScreen.y), IM_COL32(0,0,0,100)); // Left
drawList->AddRectFilled(ImVec2(cropMaxScreen.x, imageTopLeftScreen.y), imageBottomRightScreen, IM_COL32(0,0,0,100)); // Right
drawList->AddRectFilled(ImVec2(cropMinScreen.x, imageTopLeftScreen.y), ImVec2(cropMaxScreen.x, cropMinScreen.y), IM_COL32(0,0,0,100)); // Top
drawList->AddRectFilled(ImVec2(cropMinScreen.x, cropMaxScreen.y), ImVec2(cropMaxScreen.x, imageBottomRightScreen.y), IM_COL32(0,0,0,100)); // Bottom
// Draw crop rectangle outline
drawList->AddRect(cropMinScreen, cropMaxScreen, colRect, 0.0f, 0, 1.5f);
// Draw grid lines (simple 3x3 grid)
float thirdW = cropSizeScreen.x / 3.0f;
float thirdH = cropSizeScreen.y / 3.0f;
drawList->AddLine(ImVec2(cropMinScreen.x + thirdW, cropMinScreen.y), ImVec2(cropMinScreen.x + thirdW, cropMaxScreen.y), colGrid, 1.0f);
drawList->AddLine(ImVec2(cropMinScreen.x + thirdW * 2, cropMinScreen.y), ImVec2(cropMinScreen.x + thirdW * 2, cropMaxScreen.y), colGrid, 1.0f);
drawList->AddLine(ImVec2(cropMinScreen.x, cropMinScreen.y + thirdH), ImVec2(cropMaxScreen.x, cropMinScreen.y + thirdH), colGrid, 1.0f);
drawList->AddLine(ImVec2(cropMinScreen.x, cropMinScreen.y + thirdH * 2), ImVec2(cropMaxScreen.x, cropMinScreen.y + thirdH * 2), colGrid, 1.0f);
// Draw handles
for (const auto &h : handles)
{
bool isHovered = (h.id == hoveredHandle);
bool isActive = (h.id == g_activeCropHandle);
drawList->AddRectFilled(h.pos - ImVec2(handleScreenSize / 2, handleScreenSize / 2),
h.pos + ImVec2(handleScreenSize / 2, handleScreenSize / 2),
(isHovered || isActive) ? colHover : colHandle);
}
} // End if(g_cropActive)
}
else
{
// Show placeholder text if no image is loaded
ImVec2 winSize = ImGui::GetWindowSize();
ImVec2 textSize = ImGui::CalcTextSize("No Image Loaded");
ImGui::SetCursorPos(ImVec2((winSize.x - textSize.x) * 0.5f, (winSize.y - textSize.y) * 0.5f));
ImGui::Text("No Image Loaded. File -> Open... to load an image");
std::fill(g_histogramDataCPU.begin(), g_histogramDataCPU.end(), 0);
g_histogramMaxCount = 1;
// Or maybe: "File -> Open... to load an image"
}
ImGui::End(); // End Image View
// "Image Exif" window
ImGui::Begin("Image Exif");
if (g_imageIsLoaded)
{
ImGui::Text("Image Width: %d", g_loadedImage.m_width);
ImGui::Text("Image Height: %d", g_loadedImage.m_height);
ImGui::Text("Image Loaded: %s", g_imageIsLoaded ? "Yes" : "No");
ImGui::Text("Image Channels: %d", g_loadedImage.m_channels);
ImGui::Text("Image Color Space: %s", g_loadedImage.m_colorSpaceName.c_str());
ImGui::Text("Image ICC Profile Size: %zu bytes", g_loadedImage.m_iccProfile.size());
ImGui::Text("Image Metadata Size: %zu bytes", g_loadedImage.m_metadata.size());
ImGui::Separator();
ImGui::Text("Image Metadata: ");
for (const auto &entry : g_loadedImage.m_metadata)
{
ImGui::Text("%s: %s", entry.first.c_str(), entry.second.c_str());
}
} // Closing the if statement for g_imageIsLoaded
ImGui::End(); // End Image Exif
// "Edit Image" window
ImGui::Begin("Edit Image");
if (ImGui::CollapsingHeader("Histogram", ImGuiTreeNodeFlags_DefaultOpen)) {
DrawHistogramWidget("ExifHistogram", ImVec2(-1, 256));
}
// --- Edit Image (Right) ---
ImGui::Begin("Edit Image");
// --- Pipeline Configuration ---
ImGui::SeparatorText("Processing Pipeline");
// Input Color Space Selector
ImGui::Text("Input Color Space:");
ImGui::SameLine();
if (ImGui::BeginCombo("##InputCS", ColorSpaceToString(g_inputColorSpace)))
{
if (ImGui::Selectable(ColorSpaceToString(ColorSpace::LINEAR_SRGB), g_inputColorSpace == ColorSpace::LINEAR_SRGB))
{
g_inputColorSpace = ColorSpace::LINEAR_SRGB;
}
if (ImGui::Selectable(ColorSpaceToString(ColorSpace::SRGB), g_inputColorSpace == ColorSpace::SRGB))
{
g_inputColorSpace = ColorSpace::SRGB;
}
// Add other spaces later
ImGui::EndCombo();
}
// Output Color Space Selector
ImGui::Text("Output Color Space:");
ImGui::SameLine();
if (ImGui::BeginCombo("##OutputCS", ColorSpaceToString(g_outputColorSpace)))
{
if (ImGui::Selectable(ColorSpaceToString(ColorSpace::LINEAR_SRGB), g_outputColorSpace == ColorSpace::LINEAR_SRGB))
{
g_outputColorSpace = ColorSpace::LINEAR_SRGB;
}
if (ImGui::Selectable(ColorSpaceToString(ColorSpace::SRGB), g_outputColorSpace == ColorSpace::SRGB))
{
g_outputColorSpace = ColorSpace::SRGB;
}
// Add other spaces later
ImGui::EndCombo();
}
ImGui::Separator();
ImGui::Text("Operation Order:");
// Drag-and-Drop Reordering List
// Store indices or pointers to allow reordering `g_pipeline.activeOperations`
int move_from = -1, move_to = -1;
for (int i = 0; i < g_pipeline.activeOperations.size(); ++i)
{
PipelineOperation &op = g_pipeline.activeOperations[i];
ImGui::PushID(i); // Ensure unique IDs for controls within the loop
// Checkbox to enable/disable
ImGui::Checkbox("", &op.enabled);
ImGui::SameLine();
// Simple Up/Down Buttons (alternative or complementary to DND)
if (ImGui::ArrowButton("##up", ImGuiDir_Up) && i > 0)
{
move_from = i;
move_to = i - 1;
}
ImGui::SameLine();
if (ImGui::ArrowButton("##down", ImGuiDir_Down) && i < g_pipeline.activeOperations.size() - 1)
{
move_from = i;
move_to = i + 1;
}
ImGui::SameLine();
// Selectable for drag/drop source/target
ImGui::Selectable(op.name.c_str(), false, 0, ImVec2(ImGui::GetContentRegionAvail().x - 30, 0)); // Leave space for buttons
// Simple Drag Drop implementation
if (ImGui::BeginDragDropSource(ImGuiDragDropFlags_None))
{
ImGui::SetDragDropPayload("PIPELINE_OP_DND", &i, sizeof(int));
ImGui::Text("Move %s", op.name.c_str());
ImGui::EndDragDropSource();
}
if (ImGui::BeginDragDropTarget())
{
if (const ImGuiPayload *payload = ImGui::AcceptDragDropPayload("PIPELINE_OP_DND"))
{
IM_ASSERT(payload->DataSize == sizeof(int));
move_from = *(const int *)payload->Data;
move_to = i;
}
ImGui::EndDragDropTarget();
}
ImGui::PopID();
}
// Process move if detected
if (move_from != -1 && move_to != -1 && move_from != move_to)
{
PipelineOperation temp = g_pipeline.activeOperations[move_from];
g_pipeline.activeOperations.erase(g_pipeline.activeOperations.begin() + move_from);
g_pipeline.activeOperations.insert(g_pipeline.activeOperations.begin() + move_to, temp);
printf("Moved operation %d to %d\n", move_from, move_to);
}
ImGui::SeparatorText("Adjustments");
// --- Adjustment Controls ---
// Group sliders under collapsing headers as before
// The slider variables (exposure, contrast, etc.) are now directly
// linked to the PipelineOperation structs via pointers.
if (ImGui::CollapsingHeader("White Balance", ImGuiTreeNodeFlags_DefaultOpen))
{
ImGui::SliderFloat("Temperature", &temperature, 1000.0f, 20000.0f);
ImGui::SliderFloat("Tint", &tint, -100.0f, 100.0f);
}
ImGui::Separator();
if (ImGui::CollapsingHeader("Tone", ImGuiTreeNodeFlags_DefaultOpen))
{
ImGui::SliderFloat("Exposure", &exposure, -5.0f, 5.0f, "%.1f", ImGuiSliderFlags_Logarithmic);
ImGui::SliderFloat("Contrast", &contrast, -5.0f, 5.0f, "%.1f", ImGuiSliderFlags_Logarithmic);
ImGui::Separator();
ImGui::SliderFloat("Highlights", &highlights, -100.0f, 100.0f);
ImGui::SliderFloat("Shadows", &shadows, -100.0f, 100.0f);
ImGui::SliderFloat("Whites", &whites, -100.0f, 100.0f);
ImGui::SliderFloat("Blacks", &blacks, -100.0f, 100.0f);
}
ImGui::Separator();
if (ImGui::CollapsingHeader("Presence", ImGuiTreeNodeFlags_DefaultOpen))
{
ImGui::SliderFloat("Texture", &texture, -100.0f, 100.0f);
ImGui::SliderFloat("Clarity", &clarity, -100.0f, 100.0f);
ImGui::SliderFloat("Dehaze", &dehaze, -100.0f, 100.0f);
ImGui::Separator();
ImGui::SliderFloat("Vibrance", &vibrance, -100.0f, 100.0f);
ImGui::SliderFloat("Saturation", &saturation, -100.0f, 100.0f);
}
ImGui::Separator();
ImGui::SeparatorText("Transform");
if (!g_cropActive)
{
if (ImGui::Button("Crop & Straighten"))
{ // Combine visually for now
g_cropActive = true;
g_cropRectNorm = ImVec4(0.0f, 0.0f, 1.0f, 1.0f); // Reset crop on activation
g_cropRectNormInitial = g_cropRectNorm; // Store initial state
g_activeCropHandle = CropHandle::NONE;
g_isDraggingCrop = false;
// Update Original aspect ratio if needed
if (g_loadedImage.getHeight() > 0)
{
for (auto &opt : g_aspectRatios)
{
if (strcmp(opt.name, "Original") == 0)
{
opt.ratio = float(g_loadedImage.getWidth()) / float(g_loadedImage.getHeight());
break;
}
}
}
// If current selection is 'Original', update g_cropAspectRatio
if (g_selectedAspectRatioIndex >= 0 && g_selectedAspectRatioIndex < g_aspectRatios.size() &&
strcmp(g_aspectRatios[g_selectedAspectRatioIndex].name, "Original") == 0)
{
g_cropAspectRatio = g_aspectRatios[g_selectedAspectRatioIndex].ratio;
}
printf("Crop tool activated.\n");
}
}
else
{
ImGui::Text("Crop Active");
// Aspect Ratio Selector
if (ImGui::BeginCombo("Aspect Ratio", g_aspectRatios[g_selectedAspectRatioIndex].name))
{
for (int i = 0; i < g_aspectRatios.size(); ++i)
{
bool is_selected = (g_selectedAspectRatioIndex == i);
if (ImGui::Selectable(g_aspectRatios[i].name, is_selected))
{
g_selectedAspectRatioIndex = i;
g_cropAspectRatio = g_aspectRatios[i].ratio;
// Optional: Reset crop rectangle slightly or adjust existing one
// to the new ratio if transitioning from freeform? Or just let user resize.
printf("Selected aspect ratio: %s (%.2f)\n", g_aspectRatios[i].name, g_cropAspectRatio);
}
if (is_selected)
ImGui::SetItemDefaultFocus();
}
ImGui::EndCombo();
}
// Apply/Cancel Buttons
if (ImGui::Button("Apply Crop"))
{
printf("Apply Crop button clicked.\n");
// <<< --- CALL FUNCTION TO APPLY CROP --- >>>
if (ApplyCropToImage(g_loadedImage, g_cropRectNorm))
{
printf("Crop applied successfully. Reloading texture and resetting pipeline.\n");
// Reload texture with cropped data
if (!loadImageTexture(g_loadedImage))
{
fprintf(stderr, "Error reloading texture after crop!\n");
g_imageIsLoaded = false; // Mark as not usable
}
// Reset pipeline FBOs/Textures due to size change
g_pipeline.ResetResources();
}
else
{
fprintf(stderr, "Failed to apply crop to image data.\n");
// Optionally show error to user
}
// Reset state after applying
g_cropActive = false;
g_cropRectNorm = ImVec4(0.0f, 0.0f, 1.0f, 1.0f);
g_activeCropHandle = CropHandle::NONE;
g_isDraggingCrop = false;
}
ImGui::SameLine();
if (ImGui::Button("Cancel Crop"))
{
printf("Crop cancelled.\n");
g_cropActive = false;
g_cropRectNorm = ImVec4(0.0f, 0.0f, 1.0f, 1.0f); // Reset to full image
g_activeCropHandle = CropHandle::NONE;
g_isDraggingCrop = false;
}
}
ImGui::End(); // End Edit Image
ImGui::End(); // End MainDockspaceWindow
}
else
{
// Option 2: Simple full-screen window (no docking)
ImGuiViewport *viewport = ImGui::GetMainViewport();
ImGui::SetNextWindowPos(viewport->WorkPos);
ImGui::SetNextWindowSize(viewport->WorkSize);
ImGuiWindowFlags window_flags = ImGuiWindowFlags_NoDecoration | ImGuiWindowFlags_NoMove | ImGuiWindowFlags_NoResize | ImGuiWindowFlags_NoSavedSettings | ImGuiWindowFlags_NoBringToFrontOnFocus;
ImGui::Begin("FullImageViewer", nullptr, window_flags);
ImGui::Text("Image Viewer");
ImGuiTexInspect::BeginInspectorPanel("Image Inspector", g_loadedImage.m_textureId, ImVec2(g_loadedImage.m_width, g_loadedImage.m_height), ImGuiTexInspect::InspectorFlags_NoTooltip);
ImGuiTexInspect::EndInspectorPanel();
ImGui::End();
}
// Rendering
ImGui::Render();
glViewport(0, 0, (int)io.DisplaySize.x, (int)io.DisplaySize.y);
glClearColor(clear_color.x * clear_color.w, clear_color.y * clear_color.w, clear_color.z * clear_color.w, clear_color.w);
glClear(GL_COLOR_BUFFER_BIT);
ImGui_ImplOpenGL3_RenderDrawData(ImGui::GetDrawData());
// Update and Render additional Platform Windows
// (Platform functions may change the current OpenGL context, so we save/restore it to make it easier to paste this code elsewhere.
// For this specific demo app we could also call SDL_GL_MakeCurrent(window, gl_context) directly)
if (io.ConfigFlags & ImGuiConfigFlags_ViewportsEnable)
{
SDL_Window *backup_current_window = SDL_GL_GetCurrentWindow();
SDL_GLContext backup_current_context = SDL_GL_GetCurrentContext();
ImGui::UpdatePlatformWindows();
ImGui::RenderPlatformWindowsDefault();
SDL_GL_MakeCurrent(backup_current_window, backup_current_context);
}
SDL_GL_SwapWindow(window);
}
#ifdef __EMSCRIPTEN__
EMSCRIPTEN_MAINLOOP_END;
#endif
// Cleanup
// --- Cleanup ---
// Destroy operations which will delete shader programs
g_allOperations.clear(); // Deletes PipelineOperation objects and their shaders
g_pipeline.activeOperations.clear(); // Clear the list in pipeline (doesn't own shaders)
// Pipeline destructor handles FBOs/VAO etc.
// Delete the originally loaded texture
if (g_loadedImage.m_textureId != 0)
{
glDeleteTextures(1, &g_loadedImage.m_textureId);
g_loadedImage.m_textureId = 0;
}
if (g_histogramResourcesInitialized) {
if (g_histogramSSBO) glDeleteBuffers(1, &g_histogramSSBO);
if (g_histogramComputeShader) glDeleteProgram(g_histogramComputeShader);
printf("Cleaned up histogram resources.\n");
}
ImGuiTexInspect::Shutdown();
ImGui_ImplOpenGL3_Shutdown();
ImGui_ImplSDL2_Shutdown();
ImGui::DestroyContext();
SDL_GL_DeleteContext(gl_context);
SDL_DestroyWindow(window);
SDL_Quit();
return 0;
}
app_image.h
#ifndef APP_IMAGE_H
#define APP_IMAGE_H
#include <vector>
#include <string>
#include <map>
#include <optional> // Requires C++17
#include <memory>
#include <cstdint>
#include <cmath>
#include <fstream>
#include <stdexcept>
#include <algorithm>
#include <iostream> // For errors/warnings
#include <cstring> // For strcmp, memcpy, etc.
#include <setjmp.h> // For libjpeg/libpng error handling
#define IMGUI_DEFINE_MATH_OPERATORS // Allows ImVec2 operators
#include "imgui_internal.h" // Need ImFloorSigned, ImClamp, ImMax, ImMin, ImAbs
// --- User Instructions ---
// 1. Place easyexif.h in your include path.
// 2. Ensure development libraries for LibRaw, libjpeg-turbo, libpng, and libtiff are installed.
// 3. In EXACTLY ONE .cpp file in your project, before including this header, define:
// #define APP_IMAGE_IMPLEMENTATION
// 4. When compiling, LINK against the necessary libraries, e.g., using CMake or directly:
// g++ your_app.cpp -o your_app -std=c++17 -lraw -ljpeg -lpng -ltiff -lm (order might matter)
// --- Forward declarations of external library types (optional, mostly for clarity) ---
// struct jpeg_decompress_struct;
// struct jpeg_compress_struct;
// struct jpeg_error_mgr;
// struct png_struct_def;
// struct png_info_def;
// typedef struct tiff TIFF; // From tiffio.h
// class LibRaw; // From libraw/libraw.h
// Include easyexif here as it's header-only anyway
#include "exif.h"
// Enum for specifying save formats
enum class ImageSaveFormat
{
JPEG, // Quality setting applies (1-100), saves as 8-bit sRGB.
PNG_8, // 8-bit PNG (sRGB assumption).
PNG_16, // 16-bit PNG (Linear or sRGB depends on future implementation details, currently linear).
TIFF_8, // 8-bit TIFF (Uncompressed, RGB).
TIFF_16, // 16-bit TIFF (Uncompressed, RGB, Linear).
// TIFF_LZW_16 // Example for compressed TIFF
UNKNOWN
};
// Basic structure for image metadata (can hold EXIF tags)
using ImageMetadata = std::map<std::string, std::string>;
// --- App Internal Image Representation ---
class AppImage
{
public:
// --- Constructors ---
AppImage() = default;
AppImage(uint32_t width, uint32_t height, uint32_t channels = 3);
// --- Accessors ---
uint32_t getWidth() const { return m_width; }
uint32_t getHeight() const { return m_height; }
uint32_t getChannels() const { return m_channels; }
bool isEmpty() const { return m_pixelData.empty(); }
// Pixel data: Linear floating point [0.0, 1.0+], interleaved RGB/RGBA/Gray.
float *getData() { return m_pixelData.data(); }
const float *getData() const { return m_pixelData.data(); }
size_t getDataSize() const { return m_pixelData.size() * sizeof(float); }
size_t getTotalFloats() const { return m_pixelData.size(); }
std::vector<float> &getPixelVector() { return m_pixelData; }
const std::vector<float> &getPixelVector() const { return m_pixelData; }
// --- Metadata ---
ImageMetadata &getMetadata() { return m_metadata; }
const ImageMetadata &getMetadata() const { return m_metadata; }
// --- Color Information ---
std::vector<uint8_t> &getIccProfile() { return m_iccProfile; }
const std::vector<uint8_t> &getIccProfile() const { return m_iccProfile; }
std::string &getColorSpaceName() { return m_colorSpaceName; }
const std::string &getColorSpaceName() const { return m_colorSpaceName; }
bool isLinear() const { return m_isLinear; }
// --- Modifiers ---
void resize(uint32_t newWidth, uint32_t newHeight, uint32_t newChannels = 0);
void clear_image();
// --- Data members ---
// Making them public for easier access in the implementation section below,
// alternatively make loadImage/saveImage friends or add internal setters.
// public:
uint32_t m_width = 0;
uint32_t m_height = 0;
uint32_t m_channels = 0; // 1=Gray, 3=RGB, 4=RGBA
std::vector<float> m_pixelData;
ImageMetadata m_metadata;
std::vector<uint8_t> m_iccProfile;
std::string m_colorSpaceName = "Unknown";
bool m_isLinear = true; // Default assumption for internal format
GLuint m_textureId = 0;
int m_textureWidth = 0;
int m_textureHeight = 0;
};
// --- API Function Declarations ---
/**
* @brief Loads an image file, attempting type detection (RAW, JPEG, PNG, TIFF).
* Uses LibRaw, libjpeg-turbo, libpng, libtiff.
* Uses EasyExif for EXIF metadata from JPEGs (only).
* Converts loaded pixel data to internal linear float format.
* Extracts ICC profile if available (primarily from RAW).
*
* @param filePath Path to the image file.
* @return std::optional<AppImage> containing the loaded image on success, std::nullopt on failure.
*/
std::optional<AppImage> loadImage(const std::string &filePath);
/**
* @brief Saves the AppImage to a file (JPEG, PNG, TIFF).
* Uses libjpeg-turbo, libpng, libtiff.
* Converts internal linear float data to target format (e.g., 8-bit sRGB for JPEG).
* NOTE: Does NOT currently save EXIF or ICC metadata. This requires more complex handling
* (e.g., using Exiv2 library or manual file manipulation after saving pixels).
*
* @param image The AppImage to save. Assumed to be in linear float format.
* @param filePath Path to save the image file.
* @param format The desired output format.
* @param quality JPEG quality (1-100), ignored otherwise.
* @return True on success, false on failure.
*/
bool saveImage(const AppImage &image,
const std::string &filePath,
ImageSaveFormat format,
int quality = 90);
bool loadImageTexture(const AppImage &appImage);
// ============================================================================
// =================== IMPLEMENTATION SECTION =================================
// ============================================================================
// Define APP_IMAGE_IMPLEMENTATION in exactly one .cpp file before including this header
#ifdef APP_IMAGE_IMPLEMENTATION
#include <libraw/libraw.h>
#include <jpeglib.h>
#include <png.h>
#include <tiffio.h>
// Internal helper namespace
namespace AppImageUtil
{
// --- Error Handling ---
// Basic error reporting (prints to stderr)
inline void LogError(const std::string &msg)
{
std::cerr << "AppImage Error: " << msg << std::endl;
}
inline void LogWarning(const std::string &msg)
{
std::cerr << "AppImage Warning: " << msg << std::endl;
}
// --- Color Conversion Helpers (Approximate sRGB) ---
// For critical work, use a color management library (LittleCMS) and proper piecewise functions
inline float srgb_to_linear_approx(float srgbVal)
{
if (srgbVal <= 0.0f)
return 0.0f;
if (srgbVal <= 0.04045f)
{
return srgbVal / 12.92f;
}
else
{
return std::pow((srgbVal + 0.055f) / 1.055f, 2.4f);
}
}
inline float linear_to_srgb_approx(float linearVal)
{
if (linearVal <= 0.0f)
return 0.0f;
// Simple clamp for typical display output
linearVal = std::fmax(0.0f, std::fmin(1.0f, linearVal));
if (linearVal <= 0.0031308f)
{
return linearVal * 12.92f;
}
else
{
return 1.055f * std::pow(linearVal, 1.0f / 2.4f) - 0.055f;
}
}
// --- File Type Detection ---
enum class DetectedFileType
{
RAW,
JPEG,
PNG,
TIFF,
UNKNOWN
};
inline DetectedFileType detectFileType(const std::string &filePath)
{
std::ifstream file(filePath, std::ios::binary);
if (!file)
return DetectedFileType::UNKNOWN;
unsigned char magic[12]; // Read enough bytes for common signatures
file.read(reinterpret_cast<char *>(magic), sizeof(magic));
if (!file)
return DetectedFileType::UNKNOWN;
// Check common signatures
if (magic[0] == 0xFF && magic[1] == 0xD8 && magic[2] == 0xFF)
return DetectedFileType::JPEG;
if (magic[0] == 0x89 && magic[1] == 'P' && magic[2] == 'N' && magic[3] == 'G')
return DetectedFileType::PNG;
if ((magic[0] == 'I' && magic[1] == 'I' && magic[2] == 0x2A && magic[3] == 0x00) || // Little-endian TIFF
(magic[0] == 'M' && magic[1] == 'M' && magic[2] == 0x00 && magic[3] == 0x2A)) // Big-endian TIFF
{
size_t dotPos = filePath.rfind('.');
if (dotPos != std::string::npos)
{
std::string ext = filePath.substr(dotPos);
std::transform(ext.begin(), ext.end(), ext.begin(), ::tolower);
// Common RAW formats that use TIFF structure
const char *rawTiffExtensions[] = {
".nef", // Nikon
".cr2", // Canon
".dng", // Adobe/Various
".arw", // Sony
".srw", // Samsung
".orf", // Olympus
".pef", // Pentax
".raf", // Fuji
".rw2" // Panasonic
};
for (const char *rawExt : rawTiffExtensions)
{
if (ext == rawExt)
return DetectedFileType::RAW;
}
}
return DetectedFileType::TIFF;
}
// If no standard signature matches, check extension for RAW as a fallback
// (LibRaw handles many internal variations)
size_t dotPos = filePath.rfind('.');
if (dotPos != std::string::npos)
{
std::string ext = filePath.substr(dotPos);
std::transform(ext.begin(), ext.end(), ext.begin(), ::tolower);
const char *rawExtensions[] = {
".3fr", ".ari", ".arw", ".bay", ".braw", ".crw", ".cr2", ".cr3", ".cap",
".data", ".dcs", ".dcr", ".dng", ".drf", ".eip", ".erf", ".fff", ".gpr",
".iiq", ".k25", ".kdc", ".mdc", ".mef", ".mos", ".mrw", ".nef", ".nrw",
".obm", ".orf", ".pef", ".ptx", ".pxn", ".r3d", ".raf", ".raw", ".rwl",
".rw2", ".rwz", ".sr2", ".srf", ".srw", ".tif", ".x3f" // Note: .tif can be RAW or regular TIFF
};
for (const char *rawExt : rawExtensions)
{
if (ext == rawExt)
return DetectedFileType::RAW;
}
// Special case: Leica .dng can also be loaded by LibRaw
if (ext == ".dng")
return DetectedFileType::RAW;
}
return DetectedFileType::UNKNOWN;
}
// --- EXIF Loading Helper (using EasyExif) ---
inline void loadExifData(const std::string &filePath, ImageMetadata &metadata)
{
std::ifstream file(filePath, std::ios::binary | std::ios::ate);
if (!file)
return;
std::streamsize size = file.tellg();
file.seekg(0, std::ios::beg);
std::vector<unsigned char> buffer(size);
if (!file.read(reinterpret_cast<char *>(buffer.data()), size))
return;
easyexif::EXIFInfo exifInfo;
int code = exifInfo.parseFrom(buffer.data(), buffer.size());
if (code == 0)
{
// Helper lambda to add if not empty
auto addMeta = [&](const std::string &key, const std::string &value)
{
if (!value.empty())
metadata[key] = value;
};
auto addMetaInt = [&](const std::string &key, int value)
{
if (value > 0)
metadata[key] = std::to_string(value);
};
auto addMetaDouble = [&](const std::string &key, double value)
{
if (value > 0)
metadata[key] = std::to_string(value);
};
addMeta("Exif.Image.Make", exifInfo.Make);
addMeta("Exif.Image.Model", exifInfo.Model);
addMeta("Exif.Image.Software", exifInfo.Software);
addMetaInt("Exif.Image.Orientation", exifInfo.Orientation);
addMeta("Exif.Image.DateTime", exifInfo.DateTime);
addMeta("Exif.Photo.DateTimeOriginal", exifInfo.DateTimeOriginal);
addMeta("Exif.Photo.DateTimeDigitized", exifInfo.DateTimeDigitized);
addMeta("Exif.Image.SubSecTimeOriginal", exifInfo.SubSecTimeOriginal); // Often empty
addMeta("Exif.Image.Copyright", exifInfo.Copyright);
addMetaDouble("Exif.Photo.ExposureTime", exifInfo.ExposureTime);
addMetaDouble("Exif.Photo.FNumber", exifInfo.FNumber);
addMetaInt("Exif.Photo.ISOSpeedRatings", exifInfo.ISOSpeedRatings);
addMetaDouble("Exif.Photo.ShutterSpeedValue", exifInfo.ShutterSpeedValue); // APEX
addMetaDouble("Exif.Photo.ApertureValue", exifInfo.FNumber); // APEX
addMetaDouble("Exif.Photo.ExposureBiasValue", exifInfo.ExposureBiasValue);
addMetaDouble("Exif.Photo.FocalLength", exifInfo.FocalLength);
addMeta("Exif.Photo.LensModel", exifInfo.LensInfo.Model);
// GeoLocation
if (exifInfo.GeoLocation.Latitude != 0 || exifInfo.GeoLocation.Longitude != 0)
{
metadata["Exif.GPSInfo.Latitude"] = std::to_string(exifInfo.GeoLocation.Latitude);
metadata["Exif.GPSInfo.Longitude"] = std::to_string(exifInfo.GeoLocation.Longitude);
metadata["Exif.GPSInfo.Altitude"] = std::to_string(exifInfo.GeoLocation.Altitude);
metadata["Exif.GPSInfo.LatitudeRef"] = exifInfo.GeoLocation.LatComponents.direction;
metadata["Exif.GPSInfo.LongitudeRef"] = exifInfo.GeoLocation.LonComponents.direction;
}
}
else
{
// LogWarning("Could not parse EXIF data (Code " + std::to_string(code) + ") from " + filePath);
}
}
// --- LibRaw Loading ---
inline std::optional<AppImage> loadRaw(const std::string &filePath)
{
LibRaw rawProcessor;
AppImage image;
// Set parameters for desired output
// Output 16-bit data
rawProcessor.imgdata.params.output_bps = 16;
// Disable automatic brightness adjustment (we want linear)
rawProcessor.imgdata.params.no_auto_bright = 1;
// Set output color space (e.g., 1 = sRGB, 3 = ProPhoto, 4 = AdobeRGB)
// ProPhoto (3) or AdobeRGB (4) are good wide-gamut choices if editor supports them.
// sRGB (1) is safest if unsure. We'll assume Linear sRGB for now.
rawProcessor.imgdata.params.output_color = 1; // 1 = sRGB primaries
// Set gamma (1.0 for linear) - use {1.0, 1.0} for linear output
rawProcessor.imgdata.params.gamm[0] = 1.0; // Linear gamma
rawProcessor.imgdata.params.gamm[1] = 1.0;
// Use camera white balance if available, otherwise auto
rawProcessor.imgdata.params.use_camera_wb = 1;
rawProcessor.imgdata.params.use_auto_wb = (rawProcessor.imgdata.params.use_camera_wb == 0);
// Consider other params: demosaic algorithm, highlight recovery, etc.
int ret;
if ((ret = rawProcessor.open_file(filePath.c_str())) != LIBRAW_SUCCESS)
{
LogError("LibRaw: Cannot open file " + filePath + " - " + libraw_strerror(ret));
return std::nullopt;
}
if ((ret = rawProcessor.unpack()) != LIBRAW_SUCCESS)
{
LogError("LibRaw: Cannot unpack file " + filePath + " - " + libraw_strerror(ret));
return std::nullopt;
}
// Process the image (demosaic, color conversion, etc.)
if ((ret = rawProcessor.dcraw_process()) != LIBRAW_SUCCESS)
{
LogError("LibRaw: Cannot process file " + filePath + " - " + libraw_strerror(ret));
// Try fallback processing if dcraw_process fails (might be non-RAW TIFF/JPEG)
if (ret == LIBRAW_UNSUPPORTED_THUMBNAIL || ret == LIBRAW_REQUEST_FOR_NONEXISTENT_IMAGE)
{
LogWarning("LibRaw: File " + filePath + " might be non-RAW or only has thumbnail. Attempting fallback.");
// You could try loading with libjpeg/libtiff here, but for simplicity we fail
}
return std::nullopt;
}
// Get the processed image data
libraw_processed_image_t *processed_image = rawProcessor.dcraw_make_mem_image(&ret);
if (!processed_image)
{
LogError("LibRaw: Cannot make memory image for " + filePath + " - " + libraw_strerror(ret));
return std::nullopt;
}
// Copy data to AppImage format
if (processed_image->type == LIBRAW_IMAGE_BITMAP && processed_image->bits == 16)
{
image.m_width = processed_image->width;
image.m_height = processed_image->height;
image.m_channels = processed_image->colors; // Should be 3 (RGB)
image.m_isLinear = true; // We requested linear gamma
if (image.m_channels != 3)
{
LogWarning("LibRaw: Expected 3 channels, got " + std::to_string(image.m_channels));
// Handle grayscale or other cases if needed, for now assume RGB
image.m_channels = 3;
}
size_t num_pixels = static_cast<size_t>(image.m_width) * image.m_height;
size_t total_floats = num_pixels * image.m_channels;
image.m_pixelData.resize(total_floats);
uint16_t *raw_data = reinterpret_cast<uint16_t *>(processed_image->data);
float *app_data = image.m_pixelData.data();
// Convert 16-bit unsigned short [0, 65535] to float [0.0, 1.0+]
for (size_t i = 0; i < total_floats; ++i)
{
app_data[i] = static_cast<float>(raw_data[i]) / 65535.0f;
}
// Get color space name based on output_color param
switch (rawProcessor.imgdata.params.output_color)
{
case 1:
image.m_colorSpaceName = "Linear sRGB";
break;
case 2:
image.m_colorSpaceName = "Linear Adobe RGB (1998)";
break; // Check LibRaw docs if this is correct mapping
case 3:
image.m_colorSpaceName = "Linear ProPhoto RGB";
break;
case 4:
image.m_colorSpaceName = "Linear XYZ";
break; // Check LibRaw docs
default:
image.m_colorSpaceName = "Linear Unknown";
break;
}
// Extract Metadata (Example - add more fields as needed)
image.m_metadata["LibRaw.Camera.Make"] = rawProcessor.imgdata.idata.make;
image.m_metadata["LibRaw.Camera.Model"] = rawProcessor.imgdata.idata.model;
image.m_metadata["LibRaw.Image.Timestamp"] = std::to_string(rawProcessor.imgdata.other.timestamp);
image.m_metadata["LibRaw.Image.ShotOrder"] = std::to_string(rawProcessor.imgdata.other.shot_order);
image.m_metadata["LibRaw.Photo.ExposureTime"] = std::to_string(rawProcessor.imgdata.other.shutter);
image.m_metadata["LibRaw.Photo.Aperture"] = std::to_string(rawProcessor.imgdata.other.aperture);
image.m_metadata["LibRaw.Photo.ISOSpeed"] = std::to_string(rawProcessor.imgdata.other.iso_speed);
image.m_metadata["LibRaw.Photo.FocalLength"] = std::to_string(rawProcessor.imgdata.other.focal_len);
// Copy EasyExif compatible fields if possible for consistency
image.m_metadata["Exif.Image.Make"] = rawProcessor.imgdata.idata.make;
image.m_metadata["Exif.Image.Model"] = rawProcessor.imgdata.idata.model;
image.m_metadata["Exif.Photo.ExposureTime"] = std::to_string(rawProcessor.imgdata.other.shutter);
image.m_metadata["Exif.Photo.FNumber"] = std::to_string(rawProcessor.imgdata.other.aperture); // Aperture == FNumber
image.m_metadata["Exif.Photo.ISOSpeedRatings"] = std::to_string(rawProcessor.imgdata.other.iso_speed);
image.m_metadata["Exif.Photo.FocalLength"] = std::to_string(rawProcessor.imgdata.other.focal_len);
// LibRaw often provides DateTimeOriginal via timestamp
// Convert timestamp to string if needed:
// time_t ts = rawProcessor.imgdata.other.timestamp;
// char buf[30];
// strftime(buf, sizeof(buf), "%Y:%m:%d %H:%M:%S", localtime(&ts));
// image.m_metadata["Exif.Photo.DateTimeOriginal"] = buf;
// Extract ICC Profile
unsigned int icc_size = 0;
const void *icc_profile_ptr = nullptr;
if (icc_profile_ptr && icc_size > 0)
{
image.m_iccProfile.resize(icc_size);
std::memcpy(image.m_iccProfile.data(), icc_profile_ptr, icc_size);
LogWarning("LibRaw: Successfully extracted ICC profile (" + std::to_string(icc_size) + " bytes).");
// We could potentially parse the ICC profile name here, but it's complex.
if (image.m_colorSpaceName == "Linear Unknown")
image.m_colorSpaceName = "Linear (Embedded ICC)";
}
else
{
LogWarning("LibRaw: No ICC profile found or extracted.");
}
}
else
{
LogError("LibRaw: Processed image is not 16-bit bitmap (type=" + std::to_string(processed_image->type) + " bits=" + std::to_string(processed_image->bits) + ")");
LibRaw::dcraw_clear_mem(processed_image);
return std::nullopt;
}
// Clean up LibRaw resources
LibRaw::dcraw_clear_mem(processed_image);
// rawProcessor is automatically cleaned up by its destructor
return image;
}
// --- libjpeg Loading ---
// Custom error handler for libjpeg
struct JpegErrorManager
{
jpeg_error_mgr pub;
jmp_buf setjmp_buffer; // For returning control on error
};
void jpegErrorExit(j_common_ptr cinfo)
{
JpegErrorManager *myerr = reinterpret_cast<JpegErrorManager *>(cinfo->err);
// Format the error message
char buffer[JMSG_LENGTH_MAX];
(*cinfo->err->format_message)(cinfo, buffer);
LogError("libjpeg: " + std::string(buffer));
// Return control to setjmp point
longjmp(myerr->setjmp_buffer, 1);
}
inline std::optional<AppImage> loadJpeg(const std::string &filePath)
{
FILE *infile = fopen(filePath.c_str(), "rb");
if (!infile)
{
LogError("Cannot open JPEG file: " + filePath);
return std::nullopt;
}
AppImage image;
jpeg_decompress_struct cinfo;
JpegErrorManager jerr; // Custom error handler
// Setup error handling
cinfo.err = jpeg_std_error(&jerr.pub);
jerr.pub.error_exit = jpegErrorExit;
if (setjmp(jerr.setjmp_buffer))
{
// If we get here, a fatal error occurred
jpeg_destroy_decompress(&cinfo);
fclose(infile);
return std::nullopt;
}
// Initialize decompression object
jpeg_create_decompress(&cinfo);
jpeg_stdio_src(&cinfo, infile);
// Read header
jpeg_read_header(&cinfo, TRUE);
// Start decompressor - this guesses output parameters like color space
// We usually get JCS_RGB for color JPEGs
cinfo.out_color_space = JCS_RGB; // Request RGB output
jpeg_start_decompress(&cinfo);
image.m_width = cinfo.output_width;
image.m_height = cinfo.output_height;
image.m_channels = cinfo.output_components; // Should be 3 for JCS_RGB
if (image.m_channels != 1 && image.m_channels != 3)
{
LogError("libjpeg: Unsupported number of channels: " + std::to_string(image.m_channels));
jpeg_finish_decompress(&cinfo);
jpeg_destroy_decompress(&cinfo);
fclose(infile);
return std::nullopt;
}
size_t num_pixels = static_cast<size_t>(image.m_width) * image.m_height;
size_t total_floats = num_pixels * image.m_channels;
image.m_pixelData.resize(total_floats);
image.m_isLinear = true; // We will convert to linear
image.m_colorSpaceName = "Linear sRGB"; // Standard JPEG assumption
// Allocate temporary buffer for one scanline
int row_stride = cinfo.output_width * cinfo.output_components;
std::vector<unsigned char> scanline_buffer(row_stride);
JSAMPROW row_pointer[1];
row_pointer[0] = scanline_buffer.data();
float *app_data_ptr = image.m_pixelData.data();
// Read scanlines
while (cinfo.output_scanline < cinfo.output_height)
{
jpeg_read_scanlines(&cinfo, row_pointer, 1);
// Convert scanline from 8-bit sRGB to linear float
for (int i = 0; i < row_stride; ++i)
{
*app_data_ptr++ = srgb_to_linear_approx(static_cast<float>(scanline_buffer[i]) / 255.0f);
}
}
// Finish decompression and clean up
jpeg_finish_decompress(&cinfo);
jpeg_destroy_decompress(&cinfo);
fclose(infile);
// Load EXIF data separately
loadExifData(filePath, image.m_metadata);
return image;
}
// --- libpng Loading ---
// Custom error handler for libpng
void pngErrorFunc(png_structp png_ptr, png_const_charp error_msg)
{
LogError("libpng: " + std::string(error_msg));
jmp_buf *jmp_ptr = reinterpret_cast<jmp_buf *>(png_get_error_ptr(png_ptr));
if (jmp_ptr)
{
longjmp(*jmp_ptr, 1);
}
// If no jmp_buf, just exit (shouldn't happen if setup correctly)
exit(EXIT_FAILURE);
}
void pngWarningFunc(png_structp png_ptr, png_const_charp warning_msg)
{
LogWarning("libpng: " + std::string(warning_msg));
// Don't longjmp on warnings
}
inline std::optional<AppImage> loadPng(const std::string &filePath)
{
FILE *fp = fopen(filePath.c_str(), "rb");
if (!fp)
{
LogError("Cannot open PNG file: " + filePath);
return std::nullopt;
}
// Check PNG signature
unsigned char header[8];
fread(header, 1, 8, fp);
if (png_sig_cmp(header, 0, 8))
{
LogError("File is not a valid PNG: " + filePath);
fclose(fp);
return std::nullopt;
}
png_structp png_ptr = png_create_read_struct(PNG_LIBPNG_VER_STRING, nullptr, pngErrorFunc, pngWarningFunc);
if (!png_ptr)
{
LogError("libpng: png_create_read_struct failed");
fclose(fp);
return std::nullopt;
}
png_infop info_ptr = png_create_info_struct(png_ptr);
if (!info_ptr)
{
LogError("libpng: png_create_info_struct failed");
png_destroy_read_struct(&png_ptr, nullptr, nullptr);
fclose(fp);
return std::nullopt;
}
// Setup jump buffer for error handling
jmp_buf jmpbuf;
if (setjmp(jmpbuf))
{
LogError("libpng: Error during read");
png_destroy_read_struct(&png_ptr, &info_ptr, nullptr);
fclose(fp);
return std::nullopt;
}
// Assign jump buffer to png error pointer
// Note: The cast from jmp_buf* to png_voidp* might feel odd, but it's standard practice
png_set_error_fn(png_ptr, reinterpret_cast<png_voidp>(&jmpbuf), pngErrorFunc, pngWarningFunc);
png_init_io(png_ptr, fp);
png_set_sig_bytes(png_ptr, 8); // We already read the 8 signature bytes
// Read file info
png_read_info(png_ptr, info_ptr);
AppImage image;
png_uint_32 png_width, png_height;
int bit_depth, color_type, interlace_method, compression_method, filter_method;
png_get_IHDR(png_ptr, info_ptr, &png_width, &png_height, &bit_depth, &color_type,
&interlace_method, &compression_method, &filter_method);
image.m_width = png_width;
image.m_height = png_height;
// --- Transformations ---
// We want linear float RGB or RGBA output
// Handle palette -> RGB
if (color_type == PNG_COLOR_TYPE_PALETTE)
{
png_set_palette_to_rgb(png_ptr);
}
// Handle low bit depth grayscale -> 8 bit
if (color_type == PNG_COLOR_TYPE_GRAY && bit_depth < 8)
{
png_set_expand_gray_1_2_4_to_8(png_ptr);
bit_depth = 8; // Update bit depth after expansion
}
// Handle transparency chunk -> Alpha channel
if (png_get_valid(png_ptr, info_ptr, PNG_INFO_tRNS))
{
png_set_tRNS_to_alpha(png_ptr);
}
// Convert 16-bit -> 8-bit if needed (we handle 16 bit below, so maybe don't strip)
// if (bit_depth == 16) {
// png_set_strip_16(png_ptr);
// bit_depth = 8;
// }
// Convert grayscale -> RGB
if (color_type == PNG_COLOR_TYPE_GRAY || color_type == PNG_COLOR_TYPE_GRAY_ALPHA)
{
png_set_gray_to_rgb(png_ptr);
}
// Add alpha channel if missing but requested (we might always want RGBA internally)
// if (color_type == PNG_COLOR_TYPE_RGB || color_type == PNG_COLOR_TYPE_GRAY) {
// png_set_add_alpha(png_ptr, 0xFF, PNG_FILLER_AFTER); // Add opaque alpha
// }
// --- Gamma Handling ---
double file_gamma = 0.0;
bool is_srgb = (png_get_sRGB(png_ptr, info_ptr, nullptr) != 0);
if (is_srgb)
{
// If sRGB chunk is present, libpng can convert to linear for us
png_set_gamma(png_ptr, 1.0, 0.45455); // Request linear output (screen gamma 2.2)
image.m_isLinear = true;
image.m_colorSpaceName = "Linear sRGB";
}
else if (png_get_gAMA(png_ptr, info_ptr, &file_gamma))
{
// If gAMA chunk is present, convert to linear
png_set_gamma(png_ptr, 1.0, file_gamma);
image.m_isLinear = true;
image.m_colorSpaceName = "Linear Unknown (Gamma Corrected)";
}
else
{
// No gamma info, assume sRGB and convert manually later
image.m_isLinear = false; // Data read will be sRGB
image.m_colorSpaceName = "sRGB (Assumed)";
}
// Apply transformations
png_read_update_info(png_ptr, info_ptr);
// Get updated info after transformations
image.m_channels = png_get_channels(png_ptr, info_ptr);
bit_depth = png_get_bit_depth(png_ptr, info_ptr); // Update bit_depth after transforms
if (image.m_channels < 3)
{
LogWarning("libpng: Resulting image has < 3 channels after transforms. Handling as RGB.");
// Force RGB if needed? Be careful here. For simplicity, assume RGB/RGBA works.
}
// Allocate memory for the image data
size_t num_pixels = static_cast<size_t>(image.m_width) * image.m_height;
size_t total_floats = num_pixels * image.m_channels;
image.m_pixelData.resize(total_floats);
float *app_data_ptr = image.m_pixelData.data();
// Allocate row pointers
png_bytep *row_pointers = new png_bytep[image.m_height];
size_t row_bytes = png_get_rowbytes(png_ptr, info_ptr);
std::vector<unsigned char> image_buffer(row_bytes * image.m_height); // Read whole image at once
for (png_uint_32 i = 0; i < image.m_height; ++i)
{
row_pointers[i] = image_buffer.data() + i * row_bytes;
}
// Read the entire image
png_read_image(png_ptr, row_pointers);
// Convert the read data to linear float
unsigned char *buffer_ptr = image_buffer.data();
if (bit_depth == 8)
{
for (size_t i = 0; i < total_floats; ++i)
{
float val = static_cast<float>(buffer_ptr[i]) / 255.0f;
// Convert to linear if libpng didn't do it (i.e., no sRGB/gAMA chunk found)
app_data_ptr[i] = image.m_isLinear ? val : srgb_to_linear_approx(val);
}
}
else if (bit_depth == 16)
{
uint16_t *buffer_ptr16 = reinterpret_cast<uint16_t *>(buffer_ptr);
// PNG 16-bit uses network byte order (big-endian)
bool needs_swap = (png_get_uint_16((png_bytep) "\x01\x02") != 0x0102); // Check system endianness
for (size_t i = 0; i < total_floats; ++i)
{
uint16_t raw_val = buffer_ptr16[i];
if (needs_swap)
{ // Swap bytes if system is little-endian
raw_val = (raw_val >> 8) | (raw_val << 8);
}
float val = static_cast<float>(raw_val) / 65535.0f;
// Convert to linear if libpng didn't do it
app_data_ptr[i] = image.m_isLinear ? val : srgb_to_linear_approx(val);
}
}
else
{
LogError("libpng: Unsupported bit depth after transforms: " + std::to_string(bit_depth));
delete[] row_pointers;
png_destroy_read_struct(&png_ptr, &info_ptr, nullptr);
fclose(fp);
return std::nullopt;
}
// If we assumed sRGB and converted manually, update state
if (!image.m_isLinear)
{
image.m_isLinear = true;
image.m_colorSpaceName = "Linear sRGB (Assumed)";
}
// Clean up
delete[] row_pointers;
png_read_end(png_ptr, nullptr); // Finish reading remaining chunks
png_destroy_read_struct(&png_ptr, &info_ptr, nullptr);
fclose(fp);
// Note: PNG typically doesn't store EXIF in the same way as JPEG/TIFF.
// It can have text chunks (tEXt, zTXt, iTXt) which might hold metadata.
// Reading these requires additional libpng calls (png_get_text). Not implemented here.
return image;
}
// --- libtiff Loading ---
// Suppress libtiff warnings/errors (optional, can be noisy)
void tiffErrorHandler(const char *module, const char *fmt, va_list ap) { /* Do nothing */ }
void tiffWarningHandler(const char *module, const char *fmt, va_list ap) { /* Do nothing */ }
inline std::optional<AppImage> loadTiff(const std::string &filePath)
{
// Set custom handlers to suppress console output from libtiff
// TIFFSetErrorHandler(tiffErrorHandler);
// TIFFSetWarningHandler(tiffWarningHandler);
TIFF *tif = TIFFOpen(filePath.c_str(), "r");
if (!tif)
{
LogError("Cannot open TIFF file: " + filePath);
return std::nullopt;
}
AppImage image;
uint32_t w, h;
uint16_t bitsPerSample, samplesPerPixel, photometric, planarConfig;
TIFFGetFieldDefaulted(tif, TIFFTAG_IMAGEWIDTH, &w);
TIFFGetFieldDefaulted(tif, TIFFTAG_IMAGELENGTH, &h);
TIFFGetFieldDefaulted(tif, TIFFTAG_BITSPERSAMPLE, &bitsPerSample);
TIFFGetFieldDefaulted(tif, TIFFTAG_SAMPLESPERPIXEL, &samplesPerPixel);
TIFFGetFieldDefaulted(tif, TIFFTAG_PHOTOMETRIC, &photometric);
TIFFGetFieldDefaulted(tif, TIFFTAG_PLANARCONFIG, &planarConfig);
image.m_width = w;
image.m_height = h;
image.m_channels = samplesPerPixel; // Usually 1 (Gray) or 3 (RGB) or 4 (RGBA)
// --- Sanity Checks ---
if (w == 0 || h == 0 || samplesPerPixel == 0)
{
LogError("libtiff: Invalid dimensions or samples per pixel.");
TIFFClose(tif);
return std::nullopt;
}
if (bitsPerSample != 8 && bitsPerSample != 16 && bitsPerSample != 32)
{
// Note: 32-bit float TIFFs exist but require different handling
LogError("libtiff: Unsupported bits per sample: " + std::to_string(bitsPerSample) + ". Only 8/16 supported currently.");
TIFFClose(tif);
return std::nullopt;
}
if (photometric != PHOTOMETRIC_MINISBLACK && photometric != PHOTOMETRIC_MINISWHITE &&
photometric != PHOTOMETRIC_RGB && photometric != PHOTOMETRIC_PALETTE &&
photometric != PHOTOMETRIC_MASK && photometric != PHOTOMETRIC_SEPARATED /*CMYK?*/ &&
photometric != PHOTOMETRIC_LOGL && photometric != PHOTOMETRIC_LOGLUV)
{
LogWarning("libtiff: Unhandled photometric interpretation: " + std::to_string(photometric));
// We will try to read as RGB/Gray anyway... might be wrong.
}
// --- Data Reading ---
// Use TIFFReadRGBAImage for simplicity - converts many formats to RGBA uint32 internally
// Advantage: Handles various photometric interpretations, planar configs, palettes etc.
// Disadvantage: Always gives 8-bit RGBA, loses 16-bit precision. Less control.
// Alternative: Read scanlines manually (more complex, preserves bit depth)
// Let's try the manual scanline approach to preserve bit depth
size_t num_pixels = static_cast<size_t>(w) * h;
size_t total_values = num_pixels * samplesPerPixel; // Total uint8/uint16 values
image.m_pixelData.resize(total_values); // Resize for float output
image.m_isLinear = true; // Assume linear, correct later if gamma info found
image.m_colorSpaceName = "Linear Unknown (TIFF)"; // Default assumption
tmsize_t scanline_size = TIFFScanlineSize(tif);
std::vector<unsigned char> scanline_buffer(scanline_size);
float *app_data_ptr = image.m_pixelData.data();
float max_val = (bitsPerSample == 8) ? 255.0f : 65535.0f; // Normalization factor
if (planarConfig == PLANARCONFIG_CONTIG)
{
for (uint32_t row = 0; row < h; ++row)
{
if (TIFFReadScanline(tif, scanline_buffer.data(), row) < 0)
{
LogError("libtiff: Error reading scanline " + std::to_string(row));
TIFFClose(tif);
return std::nullopt;
}
// Process the contiguous scanline
if (bitsPerSample == 8)
{
unsigned char *buf_ptr = scanline_buffer.data();
for (size_t i = 0; i < w * samplesPerPixel; ++i)
{
*app_data_ptr++ = static_cast<float>(buf_ptr[i]) / max_val;
}
}
else
{ // bitsPerSample == 16
uint16_t *buf_ptr = reinterpret_cast<uint16_t *>(scanline_buffer.data());
for (size_t i = 0; i < w * samplesPerPixel; ++i)
{
*app_data_ptr++ = static_cast<float>(buf_ptr[i]) / max_val;
}
}
}
}
else if (planarConfig == PLANARCONFIG_SEPARATE)
{
// Read plane by plane - more complex, needs buffer per plane
LogWarning("libtiff: Planar configuration PLANARCONFIG_SEPARATE reading not fully implemented, data might be incorrect.");
// Basic attempt: Read all scanlines for each plane sequentially into the final buffer
size_t plane_stride = w * h;
for (uint16_t plane = 0; plane < samplesPerPixel; ++plane)
{
float *plane_start_ptr = image.m_pixelData.data() + plane; // Start at the channel offset
for (uint32_t row = 0; row < h; ++row)
{
if (TIFFReadScanline(tif, scanline_buffer.data(), row, plane) < 0)
{
LogError("libtiff: Error reading scanline " + std::to_string(row) + " plane " + std::to_string(plane));
TIFFClose(tif);
return std::nullopt;
}
// Process the separate scanline for this plane
if (bitsPerSample == 8)
{
unsigned char *buf_ptr = scanline_buffer.data();
float *current_pixel_in_plane = plane_start_ptr + row * w * samplesPerPixel;
for (uint32_t col = 0; col < w; ++col)
{
*current_pixel_in_plane = static_cast<float>(buf_ptr[col]) / max_val;
current_pixel_in_plane += samplesPerPixel; // Jump to next pixel's spot for this channel
}
}
else
{ // 16 bit
uint16_t *buf_ptr = reinterpret_cast<uint16_t *>(scanline_buffer.data());
float *current_pixel_in_plane = plane_start_ptr + row * w * samplesPerPixel;
for (uint32_t col = 0; col < w; ++col)
{
*current_pixel_in_plane = static_cast<float>(buf_ptr[col]) / max_val;
current_pixel_in_plane += samplesPerPixel;
}
}
}
}
}
else
{
LogError("libtiff: Unknown planar configuration: " + std::to_string(planarConfig));
TIFFClose(tif);
return std::nullopt;
}
// --- Post-processing based on Photometric interpretation ---
// Handle grayscale inversion
if (photometric == PHOTOMETRIC_MINISWHITE)
{
LogWarning("libtiff: Inverting MINISWHITE image.");
for (float &val : image.m_pixelData)
{
val = 1.0f - val; // Simple inversion
}
}
// TODO: Handle Palette -> RGB (needs reading the colormap tag)
if (photometric == PHOTOMETRIC_PALETTE)
{
LogWarning("libtiff: PHOTOMETRIC_PALETTE not fully handled. Image loaded as indexed.");
// Requires reading TIFFTAG_COLORMAP and expanding pixels
}
// TODO: Check for gamma tags or ICC profile tag
// uint16_t* icc_profile_count = nullptr;
// void* icc_profile_data = nullptr;
// if (TIFFGetField(tif, TIFFTAG_ICCPROFILE, &icc_profile_count, &icc_profile_data) && icc_profile_count && icc_profile_data) {
// image.m_iccProfile.resize(*icc_profile_count);
// std::memcpy(image.m_iccProfile.data(), icc_profile_data, *icc_profile_count);
// image.m_colorSpaceName = "Linear (Embedded ICC)"; // Or just "(Embedded ICC)"
// } else {
// // Check for gamma? Not standard. Assume sRGB/linear for now.
// }
// If no specific color info found, assume sRGB and convert to linear
// For TIFF, it's often safer to assume linear if 16-bit, sRGB if 8-bit without other info.
if (bitsPerSample == 8)
{
LogWarning("libtiff: Assuming 8-bit TIFF is sRGB. Converting to linear.");
for (float &val : image.m_pixelData)
{
val = srgb_to_linear_approx(val);
}
image.m_isLinear = true;
image.m_colorSpaceName = "Linear sRGB (Assumed)";
}
else
{
LogWarning("libtiff: Assuming 16-bit TIFF is already linear.");
image.m_isLinear = true;
image.m_colorSpaceName = "Linear Unknown (TIFF)";
}
TIFFClose(tif);
// Try loading EXIF using LibTiff directory reading or Exiv2 (not EasyExif)
// This basic example doesn't load EXIF from TIFFs.
// You could use Exiv2 here if integrated.
LogWarning("EXIF loading from TIFF not implemented in this example.");
return image;
}
} // namespace AppImageUtil
// --- AppImage Constructor Implementation ---
AppImage::AppImage(uint32_t width, uint32_t height, uint32_t channels)
: m_width(width), m_height(height), m_channels(channels), m_isLinear(true)
{
if (width > 0 && height > 0 && channels > 0)
{
try
{
m_pixelData.resize(static_cast<size_t>(width) * height * channels);
}
catch (const std::bad_alloc &e)
{
AppImageUtil::LogError("Failed to allocate memory for image: " + std::string(e.what()));
clear_image(); // Reset to empty state
throw; // Re-throw exception
}
}
// Default assumption is linear data in our internal format
m_colorSpaceName = "Linear Generic";
}
void AppImage::resize(uint32_t newWidth, uint32_t newHeight, uint32_t newChannels)
{
if (newChannels == 0)
newChannels = m_channels;
if (newChannels == 0)
newChannels = 3; // Default if was empty
m_width = newWidth;
m_height = newHeight;
m_channels = newChannels;
if (newWidth == 0 || newHeight == 0 || newChannels == 0)
{
m_pixelData.clear();
// Keep metadata? Optional.
}
else
{
try
{
m_pixelData.resize(static_cast<size_t>(newWidth) * newHeight * newChannels);
// Note: Resizing doesn't preserve pixel content intelligently.
// Consider adding different resize modes (clear, copy existing, etc.)
}
catch (const std::bad_alloc &e)
{
AppImageUtil::LogError("Failed to allocate memory during resize: " + std::string(e.what()));
clear_image();
throw;
}
}
}
void AppImage::clear_image()
{
m_width = 0;
m_height = 0;
m_channels = 0;
m_pixelData.clear();
m_metadata.clear();
m_iccProfile.clear();
m_colorSpaceName = "Unknown";
m_isLinear = true;
}
// --- loadImage Implementation ---
std::optional<AppImage> loadImage(const std::string &filePath)
{
using namespace AppImageUtil;
DetectedFileType type = detectFileType(filePath);
try
{
switch (type)
{
case DetectedFileType::RAW:
LogWarning("Detected type: RAW (using LibRaw)");
return loadRaw(filePath);
case DetectedFileType::JPEG:
LogWarning("Detected type: JPEG (using libjpeg)");
return loadJpeg(filePath);
case DetectedFileType::PNG:
LogWarning("Detected type: PNG (using libpng)");
return loadPng(filePath);
case DetectedFileType::TIFF:
LogWarning("Detected type: TIFF (using libtiff)");
// LibRaw can sometimes open TIFFs that contain RAW data. Try it first?
// For now, directly use libtiff.
return loadTiff(filePath);
case DetectedFileType::UNKNOWN:
default:
LogError("Unknown or unsupported file type: " + filePath);
return std::nullopt;
}
}
catch (const std::exception &e)
{
LogError("Exception caught during image loading: " + std::string(e.what()));
return std::nullopt;
}
catch (...)
{
LogError("Unknown exception caught during image loading.");
return std::nullopt;
}
}
// --- saveImage Implementation ---
namespace AppImageUtil
{
// --- libjpeg Saving ---
inline bool saveJpeg(const AppImage &image, const std::string &filePath, int quality)
{
if (image.getChannels() != 1 && image.getChannels() != 3)
{
LogError("libjpeg save: Can only save 1 (Grayscale) or 3 (RGB) channels. Image has " + std::to_string(image.getChannels()));
return false;
}
FILE *outfile = fopen(filePath.c_str(), "wb");
if (!outfile)
{
LogError("Cannot open file for JPEG writing: " + filePath);
return false;
}
jpeg_compress_struct cinfo;
JpegErrorManager jerr; // Use the same error manager as loading
// Setup error handling
cinfo.err = jpeg_std_error(&jerr.pub);
jerr.pub.error_exit = jpegErrorExit; // Use the same exit function
if (setjmp(jerr.setjmp_buffer))
{
// Error occurred during compression
jpeg_destroy_compress(&cinfo);
fclose(outfile);
return false;
}
// Initialize compression object
jpeg_create_compress(&cinfo);
jpeg_stdio_dest(&cinfo, outfile);
// Set parameters
cinfo.image_width = image.getWidth();
cinfo.image_height = image.getHeight();
cinfo.input_components = image.getChannels();
cinfo.in_color_space = (image.getChannels() == 1) ? JCS_GRAYSCALE : JCS_RGB;
jpeg_set_defaults(&cinfo);
jpeg_set_quality(&cinfo, std::max(1, std::min(100, quality)), TRUE /* limit to baseline-JPEG */);
// Could set density, comments, etc. here if needed using jpeg_set_... functions
// Start compressor
jpeg_start_compress(&cinfo, TRUE);
// Prepare 8-bit sRGB scanline buffer
int row_stride = cinfo.image_width * cinfo.input_components;
std::vector<unsigned char> scanline_buffer(row_stride);
const float *app_data = image.getData();
// Process scanlines
while (cinfo.next_scanline < cinfo.image_height)
{
unsigned char *buffer_ptr = scanline_buffer.data();
size_t row_start_index = static_cast<size_t>(cinfo.next_scanline) * cinfo.image_width * cinfo.input_components;
// Convert one row from linear float to 8-bit sRGB uchar
for (int i = 0; i < row_stride; ++i)
{
float linear_val = app_data[row_start_index + i];
float srgb_val = linear_to_srgb_approx(linear_val);
int int_val = static_cast<int>(std::round(srgb_val * 255.0f));
buffer_ptr[i] = static_cast<unsigned char>(std::max(0, std::min(255, int_val)));
}
JSAMPROW row_pointer[1];
row_pointer[0] = scanline_buffer.data();
jpeg_write_scanlines(&cinfo, row_pointer, 1);
}
// Finish compression and clean up
jpeg_finish_compress(&cinfo);
jpeg_destroy_compress(&cinfo);
fclose(outfile);
// --- Metadata Saving ---
LogWarning("JPEG EXIF/ICC Metadata saving is NOT implemented.");
// Saving metadata would typically involve:
// 1. Using Exiv2 library.
// 2. Opening the file *after* libjpeg saves the pixels.
// 3. Writing the metadata from image.m_metadata and image.m_iccProfile into the file structure.
return true;
}
// --- libpng Saving ---
inline bool savePng(const AppImage &image, const std::string &filePath, int bit_depth_out)
{
if (bit_depth_out != 8 && bit_depth_out != 16)
{
LogError("libpng save: Only 8 or 16 bit output supported.");
return false;
}
if (image.getChannels() < 1 || image.getChannels() > 4 || image.getChannels() == 2)
{
LogError("libpng save: Can only save 1 (Gray), 3 (RGB), or 4 (RGBA) channels. Image has " + std::to_string(image.getChannels()));
return false;
}
FILE *fp = fopen(filePath.c_str(), "wb");
if (!fp)
{
LogError("Cannot open file for PNG writing: " + filePath);
return false;
}
png_structp png_ptr = png_create_write_struct(PNG_LIBPNG_VER_STRING, nullptr, pngErrorFunc, pngWarningFunc);
if (!png_ptr)
{
LogError("libpng: png_create_write_struct failed");
fclose(fp);
return false;
}
png_infop info_ptr = png_create_info_struct(png_ptr);
if (!info_ptr)
{
LogError("libpng: png_create_info_struct failed");
png_destroy_write_struct(&png_ptr, nullptr);
fclose(fp);
return false;
}
// Setup jump buffer for error handling
jmp_buf jmpbuf;
if (setjmp(jmpbuf))
{
LogError("libpng: Error during write");
png_destroy_write_struct(&png_ptr, &info_ptr);
fclose(fp);
return false;
}
png_set_error_fn(png_ptr, reinterpret_cast<png_voidp>(&jmpbuf), pngErrorFunc, pngWarningFunc);
png_init_io(png_ptr, fp);
// Determine PNG color type
int color_type;
switch (image.getChannels())
{
case 1:
color_type = PNG_COLOR_TYPE_GRAY;
break;
case 3:
color_type = PNG_COLOR_TYPE_RGB;
break;
case 4:
color_type = PNG_COLOR_TYPE_RGB_ALPHA;
break;
default: /* Should have been caught earlier */
return false;
}
// Set IHDR chunk
png_set_IHDR(png_ptr, info_ptr, image.getWidth(), image.getHeight(),
bit_depth_out, color_type,
PNG_INTERLACE_NONE, PNG_COMPRESSION_TYPE_DEFAULT, PNG_FILTER_TYPE_DEFAULT);
// Set Gamma/sRGB info
bool save_as_srgb = (bit_depth_out == 8); // Convention: Save 8-bit as sRGB, 16-bit as linear
if (save_as_srgb)
{
png_set_sRGB_gAMA_and_cHRM(png_ptr, info_ptr, PNG_sRGB_INTENT_PERCEPTUAL);
LogWarning("libpng save: Saving 8-bit PNG with sRGB chunk.");
}
else
{ // 16-bit linear
png_set_gAMA(png_ptr, info_ptr, 1.0); // Explicitly linear gamma
LogWarning("libpng save: Saving 16-bit PNG with gamma 1.0 (linear).");
}
// Write header info
png_write_info(png_ptr, info_ptr);
// --- Prepare Data ---
std::vector<png_bytep> row_pointers(image.getHeight());
size_t values_per_row = static_cast<size_t>(image.getWidth()) * image.getChannels();
size_t bytes_per_value = (bit_depth_out == 8) ? 1 : 2;
size_t row_bytes = values_per_row * bytes_per_value;
std::vector<unsigned char> output_buffer(row_bytes * image.getHeight());
const float *app_data = image.getData();
bool needs_swap = (bit_depth_out == 16 && (png_get_uint_16((png_bytep) "\x01\x02") != 0x0102)); // Check endianness only for 16-bit
// Convert internal float data to target format row by row
for (uint32_t y = 0; y < image.getHeight(); ++y)
{
unsigned char *row_buf_ptr = output_buffer.data() + y * row_bytes;
row_pointers[y] = row_buf_ptr;
size_t row_start_index = static_cast<size_t>(y) * values_per_row;
if (bit_depth_out == 8)
{
unsigned char *uchar_ptr = row_buf_ptr;
for (size_t i = 0; i < values_per_row; ++i)
{
float linear_val = app_data[row_start_index + i];
float srgb_val = linear_to_srgb_approx(linear_val); // Convert to sRGB for 8-bit output
int int_val = static_cast<int>(std::round(srgb_val * 255.0f));
uchar_ptr[i] = static_cast<unsigned char>(std::max(0, std::min(255, int_val)));
}
}
else
{ // 16-bit
uint16_t *ushort_ptr = reinterpret_cast<uint16_t *>(row_buf_ptr);
for (size_t i = 0; i < values_per_row; ++i)
{
float linear_val = app_data[row_start_index + i];
// Clamp linear value before scaling for 16-bit output (0.0 to 1.0 range typical for linear PNG)
linear_val = std::fmax(0.0f, std::fmin(1.0f, linear_val));
int int_val = static_cast<int>(std::round(linear_val * 65535.0f));
uint16_t val16 = static_cast<uint16_t>(std::max(0, std::min(65535, int_val)));
if (needs_swap)
{ // Swap bytes for big-endian PNG format
ushort_ptr[i] = (val16 >> 8) | (val16 << 8);
}
else
{
ushort_ptr[i] = val16;
}
}
}
}
// Write image data
png_write_image(png_ptr, row_pointers.data());
// End writing
png_write_end(png_ptr, nullptr);
// Clean up
png_destroy_write_struct(&png_ptr, &info_ptr);
fclose(fp);
LogWarning("PNG Metadata saving (text chunks, ICC) is NOT implemented.");
return true;
}
// --- libtiff Saving ---
inline bool saveTiff(const AppImage &image, const std::string &filePath, int bit_depth_out)
{
if (bit_depth_out != 8 && bit_depth_out != 16)
{
LogError("libtiff save: Only 8 or 16 bit output supported.");
return false;
}
if (image.getChannels() < 1 || image.getChannels() > 4 || image.getChannels() == 2)
{
LogError("libtiff save: Can only save 1 (Gray), 3 (RGB), or 4 (RGBA) channels. Image has " + std::to_string(image.getChannels()));
return false;
}
TIFF *tif = TIFFOpen(filePath.c_str(), "w");
if (!tif)
{
LogError("Cannot open file for TIFF writing: " + filePath);
return false;
}
// --- Set Core TIFF Tags ---
TIFFSetField(tif, TIFFTAG_IMAGEWIDTH, image.getWidth());
TIFFSetField(tif, TIFFTAG_IMAGELENGTH, image.getHeight());
TIFFSetField(tif, TIFFTAG_SAMPLESPERPIXEL, static_cast<uint16_t>(image.getChannels()));
TIFFSetField(tif, TIFFTAG_BITSPERSAMPLE, static_cast<uint16_t>(bit_depth_out));
TIFFSetField(tif, TIFFTAG_ORIENTATION, ORIENTATION_TOPLEFT);
TIFFSetField(tif, TIFFTAG_PLANARCONFIG, PLANARCONFIG_CONTIG); // Interleaved is simpler
// Set Photometric Interpretation
uint16_t photometric;
if (image.getChannels() == 1)
{
photometric = PHOTOMETRIC_MINISBLACK; // Grayscale
}
else if (image.getChannels() >= 3)
{
photometric = PHOTOMETRIC_RGB; // RGB or RGBA
if (image.getChannels() == 4)
{
// Need to specify that the extra channel is Alpha
uint16_t extra_samples = 1;
uint16_t sample_info[] = {EXTRASAMPLE_ASSOCALPHA}; // Associated alpha
TIFFSetField(tif, TIFFTAG_EXTRASAMPLES, extra_samples, sample_info);
}
}
else
{
LogError("libtiff save: Unexpected channel count: " + std::to_string(image.getChannels()));
TIFFClose(tif);
return false;
}
TIFFSetField(tif, TIFFTAG_PHOTOMETRIC, photometric);
// Compression (optional, default is none)
TIFFSetField(tif, TIFFTAG_COMPRESSION, COMPRESSION_NONE);
// Examples: COMPRESSION_LZW, COMPRESSION_ADOBE_DEFLATE
// Rows per strip (can affect performance/compatibility)
// A sensible default is often related to scanline buffer size.
TIFFSetField(tif, TIFFTAG_ROWSPERSTRIP, TIFFDefaultStripSize(tif, (uint32_t)-1));
// Software Tag (optional)
TIFFSetField(tif, TIFFTAG_SOFTWARE, "AppImage Saver");
// --- Prepare and Write Data ---
size_t values_per_row = static_cast<size_t>(image.getWidth()) * image.getChannels();
size_t bytes_per_value = (bit_depth_out == 8) ? 1 : 2;
tmsize_t row_bytes = values_per_row * bytes_per_value;
std::vector<unsigned char> output_buffer(row_bytes); // Buffer for one row
const float *app_data = image.getData();
bool save_as_srgb = (bit_depth_out == 8); // Convention: 8-bit=sRGB, 16-bit=Linear
for (uint32_t y = 0; y < image.getHeight(); ++y)
{
unsigned char *row_buf_ptr = output_buffer.data();
size_t row_start_index = static_cast<size_t>(y) * values_per_row;
if (bit_depth_out == 8)
{
unsigned char *uchar_ptr = row_buf_ptr;
for (size_t i = 0; i < values_per_row; ++i)
{
float linear_val = app_data[row_start_index + i];
float srgb_val = linear_to_srgb_approx(linear_val); // Convert to sRGB
int int_val = static_cast<int>(std::round(srgb_val * 255.0f));
uchar_ptr[i] = static_cast<unsigned char>(std::max(0, std::min(255, int_val)));
}
}
else
{ // 16-bit
uint16_t *ushort_ptr = reinterpret_cast<uint16_t *>(row_buf_ptr);
for (size_t i = 0; i < values_per_row; ++i)
{
float linear_val = app_data[row_start_index + i];
// Clamp linear [0,1] before scaling
linear_val = std::fmax(0.0f, std::fmin(1.0f, linear_val));
int int_val = static_cast<int>(std::round(linear_val * 65535.0f));
ushort_ptr[i] = static_cast<uint16_t>(std::max(0, std::min(65535, int_val)));
// Note: TIFF uses native byte order by default, no swapping needed usually.
}
}
// Write the scanline
if (TIFFWriteScanline(tif, row_buf_ptr, y, 0) < 0)
{
LogError("libtiff save: Error writing scanline " + std::to_string(y));
TIFFClose(tif);
return false;
}
}
// Clean up
TIFFClose(tif);
LogWarning("TIFF EXIF/ICC Metadata saving is NOT implemented.");
// Saving metadata requires:
// 1. Using Exiv2 or LibTiff's directory writing functions *before* closing the file.
// 2. For ICC: TIFFSetField(tif, TIFFTAG_ICCPROFILE, count, data_ptr);
return true;
}
} // namespace AppImageUtil
namespace ImGuiImageViewerUtil {
// Linear float [0,1+] -> sRGB approx [0,1]
inline float linear_to_srgb_approx(float linearVal) {
if (linearVal <= 0.0f) return 0.0f;
linearVal = std::fmax(0.0f, std::fmin(1.0f, linearVal)); // Clamp for display
if (linearVal <= 0.0031308f) { return linearVal * 12.92f; }
else { return 1.055f * std::pow(linearVal, 1.0f / 2.4f) - 0.055f; }
}
// Round float to nearest integer
inline float Round(float f) { return ImFloor(f + 0.5f); }
} // namespace ImGuiImageViewerUtil
bool loadImageTexture(AppImage &appImage)
{
if (appImage.isEmpty() || appImage.getWidth() == 0 || appImage.getHeight() == 0)
{
AppImageUtil::LogError("loadImageTexture: Image is empty.");
return false;
}
if (!appImage.isLinear())
{
// This shouldn't happen if loadImage converts correctly, but good practice to check.
AppImageUtil::LogWarning("loadImageTexture: Warning - Image data is not linear. Pipeline expects linear input.");
// Ideally, convert to linear here if not already done. For now, proceed with caution.
}
const int width = static_cast<int>(appImage.getWidth());
const int height = static_cast<int>(appImage.getHeight());
const int channels = static_cast<int>(appImage.getChannels());
const float *linearData = appImage.getData();
size_t numFloats = static_cast<size_t>(width) * height * channels;
if (!linearData || numFloats == 0) {
AppImageUtil::LogError("loadImageTexture: Image data pointer is null or size is zero.");
return false;
}
// --- Determine OpenGL texture format ---
GLenum internalFormat;
GLenum dataFormat;
GLenum dataType = GL_FLOAT;
std::vector<float> textureDataBuffer; // Temporary buffer if we need to convert format (e.g., RGB -> RGBA)
const float* dataPtr = linearData;
if (channels == 1) {
internalFormat = GL_R16F; // Single channel, 16-bit float
dataFormat = GL_RED;
// Expand Grayscale to RGBA for easier shader handling (optional, shaders could handle GL_RED)
// Example: Expand to RGBA float buffer
textureDataBuffer.resize(static_cast<size_t>(width) * height * 4);
float* outPtr = textureDataBuffer.data();
for(int i = 0; i < width * height; ++i) {
float val = linearData[i];
*outPtr++ = val;
*outPtr++ = val;
*outPtr++ = val;
*outPtr++ = 1.0f; // Alpha
}
internalFormat = GL_RGBA16F; // Use RGBA16F if expanding
dataFormat = GL_RGBA;
dataPtr = textureDataBuffer.data(); // Point to the new buffer
AppImageUtil::LogWarning("loadImageTexture: Expanding 1-channel to RGBA16F for texture.");
} else if (channels == 3) {
internalFormat = GL_RGBA16F; // Store as RGBA, easier for FBOs/blending
dataFormat = GL_RGBA;
// Need to convert RGB float -> RGBA float
textureDataBuffer.resize(static_cast<size_t>(width) * height * 4);
float* outPtr = textureDataBuffer.data();
const float* inPtr = linearData;
for(int i = 0; i < width * height; ++i) {
*outPtr++ = *inPtr++; // R
*outPtr++ = *inPtr++; // G
*outPtr++ = *inPtr++; // B
*outPtr++ = 1.0f; // A
}
dataPtr = textureDataBuffer.data(); // Point to the new buffer
AppImageUtil::LogWarning("loadImageTexture: Expanding 3-channel RGB to RGBA16F for texture.");
} else if (channels == 4) {
internalFormat = GL_RGBA16F; // Native RGBA
dataFormat = GL_RGBA;
dataPtr = linearData; // Use original data directly
} else {
AppImageUtil::LogError("loadImageTexture: Unsupported number of channels: " + std::to_string(channels));
return false;
}
// --- Upload to OpenGL Texture ---
GLint lastTexture;
glGetIntegerv(GL_TEXTURE_BINDING_2D, &lastTexture);
if (appImage.m_textureId == 0) {
glGenTextures(1, &appImage.m_textureId);
AppImageUtil::LogWarning("loadImageTexture: Generated new texture ID: " + std::to_string(appImage.m_textureId));
} else {
AppImageUtil::LogWarning("loadImageTexture: Reusing texture ID: " + std::to_string(appImage.m_textureId));
}
glBindTexture(GL_TEXTURE_2D, appImage.m_textureId);
// Use GL_LINEAR for smoother results when zooming/scaling in the viewer, even if processing is nearest neighbor.
// The processing pipeline itself uses FBOs, textures don't need mipmaps typically.
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glPixelStorei(GL_UNPACK_ALIGNMENT, 1); // Ensure correct alignment, especially for RGB data
glPixelStorei(GL_UNPACK_ROW_LENGTH, 0); // Data is contiguous
// Check if texture dimensions/format need updating
bool needsTexImage = true;
if (appImage.m_textureWidth == width && appImage.m_textureHeight == height) {
// Could potentially use glTexSubImage2D if format matches, but glTexImage2D is safer
// if the internal format might change or if it's the first load.
// For simplicity, we'll just recreate with glTexImage2D.
AppImageUtil::LogWarning("loadImageTexture: Texture dimensions match, overwriting with glTexImage2D.");
} else {
AppImageUtil::LogWarning("loadImageTexture: Texture dimensions or format mismatch, recreating with glTexImage2D.");
}
glTexImage2D(GL_TEXTURE_2D, 0, internalFormat, width, height, 0, dataFormat, dataType, dataPtr);
GLenum err = glGetError();
if (err != GL_NO_ERROR) {
AppImageUtil::LogError("loadImageTexture: OpenGL Error after glTexImage2D: " + std::to_string(err));
glBindTexture(GL_TEXTURE_2D, lastTexture); // Restore previous binding
// Consider deleting the texture ID if creation failed badly?
if (appImage.m_textureId != 0) {
glDeleteTextures(1, &appImage.m_textureId);
appImage.m_textureId = 0;
}
return false;
} else {
AppImageUtil::LogWarning("loadImageTexture: glTexImage2D successful.");
}
// Optional: Generate mipmaps if you want smoother downscaling *in the final view*
// glGenerateMipmap(GL_TEXTURE_2D);
// glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
glBindTexture(GL_TEXTURE_2D, lastTexture); // Restore previous binding
appImage.m_textureWidth = width;
appImage.m_textureHeight = height;
AppImageUtil::LogWarning("loadImageTexture: Successfully loaded linear data into texture ID " + std::to_string(appImage.m_textureId));
return true;
}
// --- saveImage Implementation ---
bool saveImage(const AppImage &image,
const std::string &filePath,
ImageSaveFormat format,
int quality)
{
using namespace AppImageUtil;
if (image.isEmpty())
{
LogError("Cannot save an empty image.");
return false;
}
// Ensure internal data is linear before saving (or handle conversion if needed)
if (!image.isLinear())
{
LogWarning("Attempting to save non-linear internal data. Results may be incorrect if conversion to target space isn't handled properly.");
// Ideally, convert to linear here if required by the saving functions.
// For this implementation, we assume the saving functions expect linear input
// and perform the linear -> target space conversion (e.g., linear -> sRGB).
}
try
{
switch (format)
{
case ImageSaveFormat::JPEG:
return saveJpeg(image, filePath, quality);
case ImageSaveFormat::PNG_8:
return savePng(image, filePath, 8);
case ImageSaveFormat::PNG_16:
return savePng(image, filePath, 16);
case ImageSaveFormat::TIFF_8:
return saveTiff(image, filePath, 8);
case ImageSaveFormat::TIFF_16:
return saveTiff(image, filePath, 16);
case ImageSaveFormat::UNKNOWN:
default:
LogError("Unknown or unsupported save format specified.");
return false;
}
}
catch (const std::exception &e)
{
LogError("Exception caught during image saving: " + std::string(e.what()));
return false;
}
catch (...)
{
LogError("Unknown exception caught during image saving.");
return false;
}
}
#endif // APP_IMAGE_IMPLEMENTATION
#endif // APP_IMAGE_H