tedit/main.cpp
2025-04-13 14:52:23 -04:00

2903 lines
122 KiB
C++

// Dear ImGui: standalone example application for SDL2 + OpenGL
// (SDL is a cross-platform general purpose library for handling windows,
// inputs, OpenGL/Vulkan/Metal graphics context creation, etc.)
// Learn about Dear ImGui:
// - FAQ https://dearimgui.com/faq
// - Getting Started https://dearimgui.com/getting-started
// - Documentation https://dearimgui.com/docs (same as your local docs/
// folder).
// - Introduction, links and more at the top of imgui.cpp
#define IMGUI_DEFINE_MATH_OPERATORS
#include "imgui.h"
#include "imgui_impl_opengl3.h"
#include "imgui_impl_sdl2.h"
#include <GL/glew.h>
#include <SDL.h>
#include <stdio.h>
#if defined(IMGUI_IMPL_OPENGL_ES2)
#include <SDL_opengles2.h>
#else
#include <GL/gl.h>
#include <SDL_opengl.h>
#endif
// This example can also compile and run with Emscripten! See
// 'Makefile.emscripten' for details.
#ifdef __EMSCRIPTEN__
#include "../libs/emscripten/emscripten_mainloop_stub.h"
#endif
#include "exif.h"
#define APP_IMAGE_IMPLEMENTATION
#define IMGUI_IMAGE_VIEWER_IMPLEMENTATION
#include "app_image.h"
#include "imgui_tex_inspect.h"
#include "shaderutils.h"
#include "tex_inspect_opengl.h"
static float exposure = 0.0f;
static float contrast = 0.0f;
static float highlights = 0.0f;
static float shadows = 0.0f;
static float whites = 0.0f;
static float blacks = 0.0f;
static float temperature = 6500.0f; // Example starting point (Kelvin)
static float tint = 0.0f;
static float vibrance = 0.0f;
static float saturation = 0.0f;
static float clarity = 0.0f;
static float texture = 0.0f;
static float dehaze = 0.0f;
#include <functional> // For std::function
#include <map>
#include <memory> // For unique_ptr
#include <string>
#include <vector>
#include "imfilebrowser.h" // <<< Add this
#include <filesystem> // <<< Add for path manipulation (C++17)
struct ShaderUniform
{
std::string name;
GLint location = -1;
// Add type info if needed for different glUniform calls, or handle in setter
};
struct PipelineOperation
{
std::string name;
GLuint shaderProgram = 0;
bool enabled = true;
std::map<std::string, ShaderUniform> uniforms; // Map uniform name to its info
// Function to update uniforms based on global slider values etc.
std::function<void(GLuint /*program*/)> updateUniformsCallback;
// Store the actual slider variable pointers for direct modification in ImGui
// This avoids needing complex callbacks for simple sliders
float *exposureVal = nullptr;
float *contrastVal = nullptr;
float *highlightsVal = nullptr;
float *shadowsVal = nullptr;
float *whitesVal = nullptr;
float *blacksVal = nullptr;
float *temperatureVal = nullptr;
float *tintVal = nullptr;
float *vibranceVal = nullptr;
float *saturationVal = nullptr;
float *clarityVal = nullptr;
float *textureVal = nullptr;
float *dehazeVal = nullptr;
// ... add pointers for other controls as needed
PipelineOperation(std::string n) : name(std::move(n)) {}
void FindUniformLocations()
{
if (!shaderProgram)
return;
for (auto &pair : uniforms)
{
pair.second.location =
glGetUniformLocation(shaderProgram, pair.second.name.c_str());
if (pair.second.location == -1 && name != "Passthrough" &&
name != "LinearToSRGB" &&
name != "SRGBToLinear")
{ // Ignore for simple shaders
// Don't treat missing texture samplers as errors here, they are set
// explicitly
if (pair.second.name != "InputTexture")
{
fprintf(stderr, "Warning: Uniform '%s' not found in shader '%s'\n",
pair.second.name.c_str(), name.c_str());
}
}
}
}
};
// Enum for Color Spaces (expand later)
enum class ColorSpace
{
LINEAR_SRGB, // Linear Rec.709/sRGB primaries
SRGB // Non-linear sRGB (display)
// Add AdobeRGB, ProPhoto etc. later
};
const char *ColorSpaceToString(ColorSpace cs)
{
switch (cs)
{
case ColorSpace::LINEAR_SRGB:
return "Linear sRGB";
case ColorSpace::SRGB:
return "sRGB";
default:
return "Unknown";
}
}
bool ReadTextureToAppImage(GLuint textureId, int width, int height,
AppImage &outImage)
{
if (textureId == 0 || width <= 0 || height <= 0)
{
fprintf(stderr, "ReadTextureToAppImage: Invalid parameters.\n");
return false;
}
// We assume the texture 'textureId' holds LINEAR RGBA FLOAT data (e.g.,
// GL_RGBA16F) Resize AppImage to hold the data
outImage.resize(width, height,
4); // Expecting 4 channels (RGBA) from pipeline texture
outImage.m_isLinear = true; // Data we read back should be linear
outImage.m_colorSpaceName =
"Linear sRGB"; // Assuming pipeline used sRGB primaries
std::vector<float> &pixelData = outImage.getPixelVector();
if (pixelData.empty())
{
fprintf(stderr,
"ReadTextureToAppImage: Failed to allocate AppImage buffer.\n");
return false;
}
// Bind the texture
GLint lastTexture;
glGetIntegerv(GL_TEXTURE_BINDING_2D, &lastTexture);
glBindTexture(GL_TEXTURE_2D, textureId);
// Set alignment (good practice)
glPixelStorei(GL_PACK_ALIGNMENT, 1);
// Read the pixels
// We request GL_RGBA and GL_FLOAT as that's our assumed linear working format
// on GPU
glGetTexImage(GL_TEXTURE_2D,
0, // Mipmap level 0
GL_RGBA, // Request RGBA format
GL_FLOAT, // Request float data type
pixelData.data()); // Pointer to destination buffer
GLenum err = glGetError();
glBindTexture(GL_TEXTURE_2D, lastTexture); // Restore previous binding
if (err != GL_NO_ERROR)
{
fprintf(stderr,
"ReadTextureToAppImage: OpenGL Error during glGetTexImage: %u\n",
err);
outImage.clear_image(); // Clear invalid data
return false;
}
printf("ReadTextureToAppImage: Successfully read %dx%d texture.\n", width,
height);
return true;
}
class ImageProcessingPipeline
{
private:
GLuint m_fbo[2] = {0, 0};
GLuint m_tex[2] = {0, 0}; // Ping-pong textures
GLuint m_vao = 0;
GLuint m_vbo = 0;
int m_texWidth = 0;
int m_texHeight = 0;
GLuint m_passthroughShader = 0;
GLuint m_linearToSrgbShader = 0;
GLuint m_srgbToLinearShader = 0;
GLuint m_diffShader = 0; // <<< New shader for diffing
// --- Caching Members ---
bool m_isDirty = true; // Flag to indicate if reprocessing is needed
GLuint m_cachedDisplayTextureId = 0; // Cached ID for display (potentially sRGB)
GLuint m_cachedLinearTextureId = 0; // Cached ID for saving (always linear)
int m_cachedInputWidth = 0; // Track dimensions for cache validity
int m_cachedInputHeight = 0;
GLuint m_lastProcessedInputTextureId = 0; // Track input texture for cache validity
// --- Diffing State ---
bool m_diffActive = false;
std::string m_diffActiveOperationName = ""; // Name of the operation being diffed
GLuint m_diffTexBefore = 0; // Texture ID *before* the diffed operation
GLuint m_diffTexAfter = 0; // Texture ID *after* the diffed operation (in the current step)
// Helper to find operation index by name
std::optional<int> FindOperationIndex(const std::string &name) const
{
for (size_t i = 0; i < activeOperations.size(); ++i)
{
if (activeOperations[i].name == name)
{
return static_cast<int>(i);
}
}
return std::nullopt;
}
void CreateFullscreenQuad()
{
// Simple quad covering -1 to 1 in x,y and 0 to 1 in u,v
float vertices[] = {// positions // texCoords
-1.0f, 1.0f, 0.0f, 1.0f, -1.0f, -1.0f,
0.0f, 0.0f, 1.0f, -1.0f, 1.0f, 0.0f,
-1.0f, 1.0f, 0.0f, 1.0f, 1.0f, -1.0f,
1.0f, 0.0f, 1.0f, 1.0f, 1.0f, 1.0f};
printf("Matrix ready.\n");
glGenVertexArrays(1, &m_vao);
printf("Fullscreen quad VAO created.\n");
glGenBuffers(1, &m_vbo);
printf("Fullscreen quad VBO created.\n");
glBindVertexArray(m_vao);
glBindBuffer(GL_ARRAY_BUFFER, m_vbo);
glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);
printf("Fullscreen quad VBO created.\n");
// Position attribute
glVertexAttribPointer(0, 2, GL_FLOAT, GL_FALSE, 4 * sizeof(float),
(void *)0);
glEnableVertexAttribArray(0);
// Texture coordinate attribute
glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, 4 * sizeof(float),
(void *)(2 * sizeof(float)));
glEnableVertexAttribArray(1);
glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindVertexArray(0);
printf("Fullscreen quad VAO/VBO created.\n");
}
bool CreateOrResizeFBOs(int width, int height)
{
if (width == m_texWidth && height == m_texHeight && m_fbo[0] != 0)
{
return true; // Already correct size
}
if (width <= 0 || height <= 0)
{
fprintf(stderr, "CreateOrResizeFBOs: Invalid dimensions (%dx%d).\n", width, height);
return false; // Invalid dimensions
}
// Cleanup existing before creating new ones
DestroyFBOs(); // This also invalidates cached texture IDs internally
m_texWidth = width;
m_texHeight = height;
printf("Pipeline: Creating/Resizing FBOs and Textures to %dx%d.\n", width, height);
glGenFramebuffers(2, m_fbo);
glGenTextures(2, m_tex);
GLint lastTexture;
glGetIntegerv(GL_TEXTURE_BINDING_2D, &lastTexture);
GLint lastFBO;
glGetIntegerv(GL_DRAW_FRAMEBUFFER_BINDING, &lastFBO);
bool success = true;
for (int i = 0; i < 2; ++i)
{
glBindFramebuffer(GL_FRAMEBUFFER, m_fbo[i]);
glBindTexture(GL_TEXTURE_2D, m_tex[i]);
// Using RGBA16F for high precision pipeline
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA16F, width, height, 0, GL_RGBA, GL_FLOAT, nullptr);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); // Linear filtering is often better for display
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, m_tex[i], 0);
GLenum fboStatus = glCheckFramebufferStatus(GL_FRAMEBUFFER);
if (fboStatus != GL_FRAMEBUFFER_COMPLETE)
{
fprintf(stderr, "ERROR::FRAMEBUFFER:: Framebuffer %d is not complete! Status: 0x%x\n", i, fboStatus);
success = false;
break; // Stop if one fails
}
else
{
printf("FBO %d (Texture %d) created successfully (%dx%d).\n", m_fbo[i], m_tex[i], width, height);
}
}
glBindTexture(GL_TEXTURE_2D, lastTexture);
glBindFramebuffer(GL_FRAMEBUFFER, lastFBO);
if (!success)
{
fprintf(stderr, "Pipeline: FBO creation failed. Cleaning up.\n");
DestroyFBOs(); // Clean up partial setup
return false;
}
// Successfully created, mark dirty because resources changed
MarkDirty();
return true;
}
void DestroyFBOs()
{
if (m_fbo[0])
{
glDeleteFramebuffers(2, m_fbo);
m_fbo[0] = m_fbo[1] = 0;
}
if (m_tex[0])
{
glDeleteTextures(2, m_tex);
m_tex[0] = m_tex[1] = 0;
}
// Invalidate cache when FBOs are destroyed
m_texWidth = m_texHeight = 0;
m_cachedDisplayTextureId = 0;
m_cachedLinearTextureId = 0;
m_cachedInputWidth = 0;
m_cachedInputHeight = 0;
m_lastProcessedInputTextureId = 0;
m_isDirty = true; // Need reprocessing after destruction
printf("Pipeline: Destroyed FBOs and textures. Cache invalidated.\n");
}
struct ProcessingResult
{
GLuint linearOutput = 0;
GLuint displayOutput = 0;
GLuint diffOutput = 0; // Only valid if diff was active during processing
};
ProcessingResult ExecuteProcessingSteps(GLuint inputTextureId, int width, int height)
{
ProcessingResult result = {};
m_diffTexBefore = 0; // Reset diff textures for this run
m_diffTexAfter = 0;
if (inputTextureId == 0 || width <= 0 || height <= 0 || !m_diffShader)
{
fprintf(stderr, "ExecuteProcessingSteps: Invalid input, state, or missing diff shader.\n");
return result; // Return empty result
}
printf("Pipeline: Executing processing steps for %dx%d image (Input TexID: %u). Diff Active: %s (%s)\n",
width, height, inputTextureId, m_diffActive ? "Yes" : "No", m_diffActiveOperationName.c_str());
if (!CreateOrResizeFBOs(width, height))
{
fprintf(stderr, "ExecuteProcessingSteps: Failed to create/resize FBOs.\n");
return result;
}
// Store original state
GLint viewport[4];
glGetIntegerv(GL_VIEWPORT, viewport);
GLint lastFBO;
glGetIntegerv(GL_DRAW_FRAMEBUFFER_BINDING, &lastFBO);
// ... (save other relevant state: active texture, program, vao etc) ...
GLint lastActiveTexture;
glGetIntegerv(GL_ACTIVE_TEXTURE, &lastActiveTexture);
GLint lastBoundTexture;
glGetIntegerv(GL_TEXTURE_BINDING_2D, &lastBoundTexture);
GLint lastProgram;
glGetIntegerv(GL_CURRENT_PROGRAM, &lastProgram);
GLint lastVao;
glGetIntegerv(GL_VERTEX_ARRAY_BINDING, &lastVao);
glViewport(0, 0, m_texWidth, m_texHeight);
glBindVertexArray(m_vao);
int currentBufferIndex = 0; // Index into m_fbo/m_tex (0 or 1) -> Target for WRITING
GLuint currentReadTexId = inputTextureId; // Texture to READ from
std::optional<int> diffOpIndexOpt = std::nullopt;
if (m_diffActive && !m_diffActiveOperationName.empty())
{
diffOpIndexOpt = FindOperationIndex(m_diffActiveOperationName);
if (!diffOpIndexOpt)
{
fprintf(stderr, "Warning: Diff active but couldn't find operation '%s'\n", m_diffActiveOperationName.c_str());
}
}
// --- Input Color Space Conversion (if needed) ---
bool handledInitialStep = false;
// ... (Input conversion logic remains the same as before) ...
if (inputColorSpace == ColorSpace::SRGB)
{
glBindFramebuffer(GL_FRAMEBUFFER, m_fbo[currentBufferIndex]);
glUseProgram(m_srgbToLinearShader);
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, currentReadTexId);
glUniform1i(glGetUniformLocation(m_srgbToLinearShader, "InputTexture"), 0);
glDrawArrays(GL_TRIANGLES, 0, 6);
currentReadTexId = m_tex[currentBufferIndex];
currentBufferIndex = 1 - currentBufferIndex;
handledInitialStep = true;
}
else
{
bool anyUserOpsEnabled = false; /* check if any op is enabled */
for (const auto &op : activeOperations)
if (op.enabled && op.shaderProgram)
anyUserOpsEnabled = true;
if (anyUserOpsEnabled)
{
glBindFramebuffer(GL_FRAMEBUFFER, m_fbo[currentBufferIndex]);
glUseProgram(m_passthroughShader);
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, currentReadTexId);
glUniform1i(glGetUniformLocation(m_passthroughShader, "InputTexture"), 0);
glDrawArrays(GL_TRIANGLES, 0, 6);
currentReadTexId = m_tex[currentBufferIndex];
currentBufferIndex = 1 - currentBufferIndex;
handledInitialStep = true;
}
else
{
handledInitialStep = false;
}
}
// --- Apply Editing Operations ---
int appliedOpsCount = 0;
for (size_t i = 0; i < activeOperations.size(); ++i)
{
const auto &op = activeOperations[i];
if (op.enabled && op.shaderProgram)
{
// <<< DIFF CAPTURE: Before processing the target operation >>>
if (diffOpIndexOpt && (int)i == *diffOpIndexOpt)
{
m_diffTexBefore = currentReadTexId; // Capture the input to this step
printf("Pipeline: Capturing TexID %u as 'Before' for diff op '%s'\n", m_diffTexBefore, op.name.c_str());
}
glBindFramebuffer(GL_FRAMEBUFFER, m_fbo[currentBufferIndex]);
glUseProgram(op.shaderProgram);
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, currentReadTexId);
GLint loc = glGetUniformLocation(op.shaderProgram, "InputTexture");
if (loc != -1)
glUniform1i(loc, 0);
// Set uniforms (as before)
if (op.updateUniformsCallback)
{
op.updateUniformsCallback(op.shaderProgram);
}
else
{
// (Your existing uniform setting logic based on op.*Val pointers)
// Example:
if (op.exposureVal && op.uniforms.count("exposureValue"))
glUniform1f(op.uniforms.at("exposureValue").location, *op.exposureVal);
if (op.contrastVal && op.uniforms.count("contrastValue"))
glUniform1f(op.uniforms.at("contrastValue").location, *op.contrastVal);
if (op.highlightsVal && op.uniforms.count("highlightsValue"))
glUniform1f(op.uniforms.at("highlightsValue").location, *op.highlightsVal);
if (op.shadowsVal && op.uniforms.count("shadowsValue"))
glUniform1f(op.uniforms.at("shadowsValue").location, *op.shadowsVal);
if (op.whitesVal && op.uniforms.count("whitesValue"))
glUniform1f(op.uniforms.at("whitesValue").location, *op.whitesVal);
if (op.blacksVal && op.uniforms.count("blacksValue"))
glUniform1f(op.uniforms.at("blacksValue").location, *op.blacksVal);
if (op.temperatureVal && op.uniforms.count("temperatureValue"))
glUniform1f(op.uniforms.at("temperatureValue").location, *op.temperatureVal);
if (op.tintVal && op.uniforms.count("tintValue"))
glUniform1f(op.uniforms.at("tintValue").location, *op.tintVal);
if (op.vibranceVal && op.uniforms.count("vibranceValue"))
glUniform1f(op.uniforms.at("vibranceValue").location, *op.vibranceVal);
if (op.saturationVal && op.uniforms.count("saturationValue"))
glUniform1f(op.uniforms.at("saturationValue").location, *op.saturationVal);
if (op.clarityVal && op.uniforms.count("clarityValue"))
glUniform1f(op.uniforms.at("clarityValue").location, *op.clarityVal);
if (op.textureVal && op.uniforms.count("textureValue"))
glUniform1f(op.uniforms.at("textureValue").location, *op.textureVal);
if (op.dehazeVal && op.uniforms.count("dehazeValue"))
glUniform1f(op.uniforms.at("dehazeValue").location, *op.dehazeVal);
// ... etc ...
}
glDrawArrays(GL_TRIANGLES, 0, 6);
// Update read texture for the *next* step
currentReadTexId = m_tex[currentBufferIndex];
// <<< DIFF CAPTURE: After processing the target operation >>>
if (diffOpIndexOpt && (int)i == *diffOpIndexOpt)
{
m_diffTexAfter = currentReadTexId; // Capture the output of this step
printf("Pipeline: Capturing TexID %u as 'After' for diff op '%s'\n", m_diffTexAfter, op.name.c_str());
}
// Swap write target for the *next* step
currentBufferIndex = 1 - currentBufferIndex;
appliedOpsCount++;
handledInitialStep = true;
}
}
// At this point, `currentReadTexId` holds the final linear result of the pipeline
result.linearOutput = currentReadTexId;
printf("Pipeline: Finished editing ops. Final linear TexID: %u\n", result.linearOutput);
// --- Output Color Space Conversion (for display, using linearOutput) ---
result.displayOutput = result.linearOutput; // Assume linear output initially
GLuint displayConversionTargetFbo = m_fbo[currentBufferIndex]; // The *next* buffer is free
bool performedDisplayConversion = false;
if (outputColorSpace == ColorSpace::SRGB)
{
bool needsLinearToSrgb = false;
// ... (logic to determine if conversion is needed, same as before) ...
if (handledInitialStep || appliedOpsCount > 0)
needsLinearToSrgb = true;
else
needsLinearToSrgb = (inputColorSpace == ColorSpace::LINEAR_SRGB);
if (needsLinearToSrgb)
{
printf("Pipeline: Applying Linear -> sRGB conversion for display output.\n");
glBindFramebuffer(GL_FRAMEBUFFER, displayConversionTargetFbo); // Use the *next* FBO
glUseProgram(m_linearToSrgbShader);
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, result.linearOutput); // Read the final linear result
glUniform1i(glGetUniformLocation(m_linearToSrgbShader, "InputTexture"), 0);
glDrawArrays(GL_TRIANGLES, 0, 6);
result.displayOutput = m_tex[currentBufferIndex]; // Result is in the target FBO's texture
performedDisplayConversion = true;
printf("Pipeline: Final display (sRGB) TexID: %u\n", result.displayOutput);
}
}
// If no conversion needed, result.displayOutput remains == result.linearOutput
// --- Diff Rendering Pass (if active) ---
if (m_diffActive && diffOpIndexOpt && m_diffTexBefore != 0 && m_diffTexAfter != 0)
{
printf("Pipeline: Performing Diff Pass (Before: %u, After: %u)\n", m_diffTexBefore, m_diffTexAfter);
// Determine where to render the diff output.
// We need a *different* buffer than the one holding the final display output.
// If display conversion happened, 'currentBufferIndex' points to the FBO used for it.
// The *other* FBO (1-currentBufferIndex) should hold the final linear result.
// Let's render the diff into the FBO that holds the linear result, overwriting it temporarily for display.
// Or, better: if display conversion happened, render to the *next* buffer index again. If not, use the first buffer.
GLuint diffTargetFbo;
GLuint diffTargetTexId;
if (performedDisplayConversion)
{
// Display output is in m_tex[currentBufferIndex].
// Linear output is in m_tex[1-currentBufferIndex].
// Render diff to the *next* buffer again (overwriting linear temporarily *if needed*)
int diffBufferIndex = 1 - currentBufferIndex; // The buffer holding linear result
diffTargetFbo = m_fbo[diffBufferIndex];
diffTargetTexId = m_tex[diffBufferIndex];
printf("Pipeline: Rendering Diff to FBO %d (TexID %d) - buffer that held linear.\n", diffTargetFbo, diffTargetTexId);
}
else
{
// Display output == Linear output, both are currentReadTexId.
// Render diff to the *next* buffer index.
diffTargetFbo = m_fbo[currentBufferIndex];
diffTargetTexId = m_tex[currentBufferIndex];
printf("Pipeline: Rendering Diff to FBO %d (TexID %d) - next available buffer.\n", diffTargetFbo, diffTargetTexId);
}
glBindFramebuffer(GL_FRAMEBUFFER, diffTargetFbo);
glUseProgram(m_diffShader);
// Bind "Before" texture to unit 0
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, m_diffTexBefore);
glUniform1i(glGetUniformLocation(m_diffShader, "texBefore"), 0);
// Bind "After" texture to unit 1
glActiveTexture(GL_TEXTURE1);
glBindTexture(GL_TEXTURE_2D, m_diffTexAfter);
glUniform1i(glGetUniformLocation(m_diffShader, "texAfter"), 1);
// Set other diff uniforms (e.g., boost)
glUniform1f(glGetUniformLocation(m_diffShader, "diffBoost"), 5.0f); // Example boost
glDrawArrays(GL_TRIANGLES, 0, 6);
result.diffOutput = diffTargetTexId; // Store the ID of the texture containing the diff
printf("Pipeline: Diff rendering complete. Diff TexID: %u\n", result.diffOutput);
// IMPORTANT: Ensure texture unit 1 is unbound afterwards if necessary
glActiveTexture(GL_TEXTURE1);
glBindTexture(GL_TEXTURE_2D, 0);
glActiveTexture(GL_TEXTURE0); // Return to default active texture unit
}
// --- Cleanup ---
glBindVertexArray(lastVao);
glBindFramebuffer(GL_FRAMEBUFFER, lastFBO);
glViewport(viewport[0], viewport[1], viewport[2], viewport[3]);
glUseProgram(lastProgram);
glActiveTexture(lastActiveTexture);
glBindTexture(GL_TEXTURE_2D, lastBoundTexture);
return result;
}
public:
// The ordered list of operations the user has configured
std::vector<PipelineOperation> activeOperations;
ColorSpace inputColorSpace = ColorSpace::LINEAR_SRGB; // Default
ColorSpace outputColorSpace = ColorSpace::SRGB; // Default for display
ImageProcessingPipeline() = default;
~ImageProcessingPipeline()
{
DestroyFBOs(); // Cleanup FBOs/Textures
if (m_vao)
glDeleteVertexArrays(1, &m_vao);
if (m_vbo)
glDeleteBuffers(1, &m_vbo);
// Shaders owned by PipelineOperation structs should be deleted externally or via smart pointers
// (Assuming InitShaderOperations handles this)
if (m_passthroughShader)
glDeleteProgram(m_passthroughShader);
if (m_linearToSrgbShader)
glDeleteProgram(m_linearToSrgbShader);
if (m_srgbToLinearShader)
glDeleteProgram(m_srgbToLinearShader);
if (m_diffShader)
glDeleteProgram(m_diffShader); // <<< Cleanup diff shader
printf("ImageProcessingPipeline destroyed.\n");
}
void Init(const std::string &shaderBasePath)
{
printf("Initializing ImageProcessingPipeline...\n");
CreateFullscreenQuad();
std::string vsPath = shaderBasePath + "passthrough.vert";
printf("Loading essential shaders from: %s\n", shaderBasePath.c_str());
m_passthroughShader = LoadShaderProgramFromFiles(vsPath, shaderBasePath + "passthrough.frag");
m_linearToSrgbShader = LoadShaderProgramFromFiles(vsPath, shaderBasePath + "linear_to_srgb.frag");
m_srgbToLinearShader = LoadShaderProgramFromFiles(vsPath, shaderBasePath + "srgb_to_linear.frag");
m_diffShader = LoadShaderProgramFromFiles(vsPath, shaderBasePath + "diff.frag"); // <<< Load diff shader
if (!m_passthroughShader || !m_linearToSrgbShader || !m_srgbToLinearShader)
{
fprintf(stderr, "FATAL: Failed to load essential pipeline shaders! Check paths and shader code.\n");
// Consider throwing or setting an error state
}
else
{
printf("Essential pipeline shaders loaded (Passthrough: %u, Lin->sRGB: %u, sRGB->Lin: %u).\n",
m_passthroughShader, m_linearToSrgbShader, m_srgbToLinearShader);
}
MarkDirty(); // Ensure processing happens on first frame after init
}
// Call this to signal that parameters have changed and reprocessing is needed
void MarkDirty()
{
if (!m_isDirty)
{
printf("Pipeline: Marked as dirty.\n");
m_isDirty = true;
}
}
bool IsDirty() const
{
return m_isDirty;
}
void ResetResources()
{
printf("Pipeline: Resetting FBOs and Textures.\n");
DestroyFBOs(); // Call the existing cleanup method
}
// --- Diffing Control ---
void SetDiffActiveOperation(const char *operationName)
{
std::string nameStr = (operationName ? operationName : "");
bool wasActive = m_diffActive;
std::string oldName = m_diffActiveOperationName;
m_diffActive = !nameStr.empty();
m_diffActiveOperationName = nameStr;
if (m_diffActive != wasActive || m_diffActiveOperationName != oldName)
{
printf("Pipeline: Diff state changed. Active: %s, Op: %s\n",
m_diffActive ? "Yes" : "No", m_diffActiveOperationName.c_str());
MarkDirty(); // Changing diff state requires reprocessing
}
}
bool IsDiffActive() const
{
return m_diffActive;
}
bool IsDiffActiveForOperation(const char *operationName) const
{
if (!operationName)
return false;
return m_diffActive && m_diffActiveOperationName == operationName;
}
// --- Public Interface ---
// Gets the texture ID for display or saving, processing only if necessary.
GLuint GetProcessedTexture(GLuint inputTextureId, int width, int height, bool forDisplay)
{
if (inputTextureId == 0 || width <= 0 || height <= 0)
{
// ... (invalid input handling, clear cache) ...
return 0;
}
// Cache validity check (same as before)
bool cacheInputValid = (inputTextureId == m_lastProcessedInputTextureId &&
width == m_cachedInputWidth &&
height == m_cachedInputHeight);
// Cache is invalidated if dirty OR input changed OR diff state is active (diff result isn't cached long-term)
if (!m_isDirty && cacheInputValid && !m_diffActive && m_cachedDisplayTextureId != 0 && m_cachedLinearTextureId != 0)
{
// Cache hit and not diffing
return forDisplay ? m_cachedDisplayTextureId : m_cachedLinearTextureId;
}
else
{
// Needs processing
if (m_isDirty)
printf("Pipeline: Cache dirty flag set. Reprocessing.\n");
if (!cacheInputValid)
printf("Pipeline: Input changed. Reprocessing.\n");
if (m_diffActive)
printf("Pipeline: Diff mode active. Reprocessing for diff.\n");
ProcessingResult results = ExecuteProcessingSteps(inputTextureId, width, height);
if (results.linearOutput != 0 && results.displayOutput != 0)
{
printf("Pipeline: Processing successful.\n");
// Update cache ONLY if NOT in diff mode
if (!m_diffActive)
{
printf("Pipeline: Updating cache (Linear: %u, Display: %u).\n", results.linearOutput, results.displayOutput);
m_cachedLinearTextureId = results.linearOutput;
m_cachedDisplayTextureId = results.displayOutput;
m_cachedInputWidth = width;
m_cachedInputHeight = height;
m_lastProcessedInputTextureId = inputTextureId;
m_isDirty = false; // Clear dirty flag *after* successful non-diff processing
}
else
{
printf("Pipeline: Diff active, cache not updated.\n");
// Keep pipeline dirty if diffing, so next non-diff frame recalculates correctly
m_isDirty = true;
}
// Return the correct texture
if (forDisplay)
{
// If diffing was active and produced a result, show that
if (m_diffActive && results.diffOutput != 0)
{
printf("Pipeline: Returning DIFF texture (%u) for display.\n", results.diffOutput);
return results.diffOutput;
}
else
{
// Otherwise, return the normal display texture
printf("Pipeline: Returning normal display texture (%u) for display.\n", results.displayOutput);
return results.displayOutput;
}
}
else
{
// For saving, always return the linear result
printf("Pipeline: Returning LINEAR texture (%u) for saving.\n", results.linearOutput);
return results.linearOutput;
}
}
else
{
// Processing failed
fprintf(stderr, "Pipeline: ExecuteProcessingSteps failed. Invalidating cache.\n");
m_cachedDisplayTextureId = 0;
m_cachedLinearTextureId = 0;
m_cachedInputWidth = 0;
m_cachedInputHeight = 0;
m_lastProcessedInputTextureId = 0;
m_isDirty = true; // Remain dirty
return 0;
}
}
}
};
static ImageProcessingPipeline
g_pipeline; // <<< Global pipeline manager instance
static std::vector<std::unique_ptr<PipelineOperation>>
g_allOperations; // Store all possible operations
static GLuint g_processedTextureId = 0; // Texture ID after pipeline processing
static ColorSpace g_inputColorSpace =
ColorSpace::LINEAR_SRGB; // Connect to pipeline's setting
static ColorSpace g_outputColorSpace =
ColorSpace::SRGB; // Connect to pipeline's setting
// File Dialogs
static ImGui::FileBrowser g_openFileDialog;
// Add flags for save dialog: Allow new filename, allow creating directories
static ImGui::FileBrowser
g_exportSaveFileDialog(ImGuiFileBrowserFlags_EnterNewFilename |
ImGuiFileBrowserFlags_CreateNewDir);
// Export Dialog State
static bool g_showExportWindow = false;
static ImageSaveFormat g_exportFormat = ImageSaveFormat::JPEG; // Default format
static int g_exportQuality = 90; // Default JPEG quality
static std::string g_exportErrorMsg =
""; // To display errors in the export dialog
// Current loaded file path (useful for default export name)
static std::string g_currentFilePath = "";
// Crop State
static bool g_cropActive = false;
static ImVec4 g_cropRectNorm =
ImVec4(0.0f, 0.0f, 1.0f, 1.0f); // (MinX, MinY, MaxX, MaxY) normalized 0-1
static ImVec4 g_cropRectNormInitial =
g_cropRectNorm; // Store initial state for cancel/dragging base
static float g_cropAspectRatio =
0.0f; // 0.0f = Freeform, > 0.0f = constrained (Width / Height)
static int g_selectedAspectRatioIndex = 0; // Index for the dropdown
static GLuint g_histogramComputeShader = 0;
static GLuint g_histogramSSBO = 0;
const int NUM_HISTOGRAM_BINS = 256;
const int HISTOGRAM_BUFFER_SIZE = NUM_HISTOGRAM_BINS * 3; // R, G, B
static std::vector<unsigned int> g_histogramDataCPU(HISTOGRAM_BUFFER_SIZE, 0);
static unsigned int g_histogramMaxCount =
255; // Max count found, for scaling (init to 1 to avoid div by zero)
static bool g_histogramResourcesInitialized = false;
// Interaction state
enum class CropHandle
{
NONE,
TOP_LEFT,
TOP_RIGHT,
BOTTOM_LEFT,
BOTTOM_RIGHT,
TOP,
BOTTOM,
LEFT,
RIGHT,
INSIDE
};
static CropHandle g_activeCropHandle = CropHandle::NONE;
static bool g_isDraggingCrop = false;
static ImVec2 g_dragStartMousePos = ImVec2(0, 0); // Screen coords
bool InitHistogramResources(const std::string &shaderBasePath)
{
printf("Initializing Histogram Resources...\n");
// Load Compute Shader
// We need a way to load compute shaders, modify shader_utils or add here
std::string compSource =
ReadFile(shaderBasePath + "histogram.comp"); // Assuming ReadFile exists
if (compSource.empty())
{
fprintf(stderr, "ERROR: Failed to read histogram.comp\n");
return false;
}
// Simple Compute Shader Compilation/Linking (add error checking!)
GLuint computeShaderObj = glCreateShader(GL_COMPUTE_SHADER);
const char *src = compSource.c_str();
glShaderSource(computeShaderObj, 1, &src, nullptr);
glCompileShader(computeShaderObj);
// --- Add GLint success; glGetShaderiv; glGetShaderInfoLog checks ---
GLint success;
glGetShaderiv(computeShaderObj, GL_COMPILE_STATUS, &success);
if (!success)
{
GLint logLength;
glGetShaderiv(computeShaderObj, GL_INFO_LOG_LENGTH, &logLength);
std::vector<char> log(logLength);
glGetShaderInfoLog(computeShaderObj, logLength, nullptr, log.data());
fprintf(stderr, "ERROR::SHADER::HISTOGRAM::COMPILATION_FAILED\n%s\n",
log.data());
glDeleteShader(computeShaderObj);
return false;
}
g_histogramComputeShader = glCreateProgram();
glAttachShader(g_histogramComputeShader, computeShaderObj);
glLinkProgram(g_histogramComputeShader);
// --- Add GLint success; glGetProgramiv; glGetProgramInfoLog checks ---
glGetProgramiv(g_histogramComputeShader, GL_LINK_STATUS, &success);
if (!success)
{
GLint logLength;
glGetProgramiv(g_histogramComputeShader, GL_INFO_LOG_LENGTH, &logLength);
std::vector<char> log(logLength);
glGetProgramInfoLog(g_histogramComputeShader, logLength, nullptr,
log.data());
fprintf(stderr, "ERROR::PROGRAM::HISTOGRAM::LINKING_FAILED\n%s\n",
log.data());
glDeleteProgram(g_histogramComputeShader);
g_histogramComputeShader = 0;
glDeleteShader(computeShaderObj); // Delete shader obj even on link failure
return false;
}
glDeleteShader(computeShaderObj); // Delete shader object after linking
printf("Histogram compute shader loaded and linked successfully (Program ID: "
"%u).\n",
g_histogramComputeShader);
// Create Shader Storage Buffer Object (SSBO)
glGenBuffers(1, &g_histogramSSBO);
glBindBuffer(GL_SHADER_STORAGE_BUFFER, g_histogramSSBO);
// Allocate buffer size: 3 channels * 256 bins * size of uint
glBufferData(GL_SHADER_STORAGE_BUFFER,
HISTOGRAM_BUFFER_SIZE * sizeof(unsigned int), NULL,
GL_DYNAMIC_READ); // Data will be written by GPU, read by CPU
glBindBuffer(GL_SHADER_STORAGE_BUFFER, 0); // Unbind
GLenum err = glGetError();
if (err != GL_NO_ERROR || g_histogramSSBO == 0)
{
fprintf(stderr,
"ERROR: Failed to create histogram SSBO. OpenGL Error: %u\n", err);
if (g_histogramComputeShader)
glDeleteProgram(g_histogramComputeShader);
g_histogramComputeShader = 0;
return false;
}
else
{
printf("Histogram SSBO created successfully (Buffer ID: %u, Size: %d "
"bytes).\n",
g_histogramSSBO, HISTOGRAM_BUFFER_SIZE * sizeof(unsigned int));
}
g_histogramResourcesInitialized = true;
return true;
}
// Aspect Ratio Options
struct AspectRatioOption
{
const char *name;
float ratio; // W/H
};
static std::vector<AspectRatioOption> g_aspectRatios = {
{"Freeform", 0.0f}, {"Original", 0.0f}, // Will be calculated dynamically
{"1:1", 1.0f},
{"16:9", 16.0f / 9.0f},
{"9:16", 9.0f / 16.0f},
{"4:3", 4.0f / 3.0f},
{"3:4", 3.0f / 4.0f},
// Add more as needed
};
void UpdateCropRect(ImVec4 &rectNorm, CropHandle handle, ImVec2 deltaNorm,
float aspectRatio)
{
ImVec2 minXY = ImVec2(rectNorm.x, rectNorm.y);
ImVec2 maxXY = ImVec2(rectNorm.z, rectNorm.w);
// Apply delta based on handle
switch (handle)
{
case CropHandle::TOP_LEFT:
minXY += deltaNorm;
break;
case CropHandle::TOP_RIGHT:
minXY.y += deltaNorm.y;
maxXY.x += deltaNorm.x;
break;
case CropHandle::BOTTOM_LEFT:
minXY.x += deltaNorm.x;
maxXY.y += deltaNorm.y;
break;
case CropHandle::BOTTOM_RIGHT:
maxXY += deltaNorm;
break;
case CropHandle::TOP:
minXY.y += deltaNorm.y;
break;
case CropHandle::BOTTOM:
maxXY.y += deltaNorm.y;
break;
case CropHandle::LEFT:
minXY.x += deltaNorm.x;
break;
case CropHandle::RIGHT:
maxXY.x += deltaNorm.x;
break;
case CropHandle::INSIDE:
minXY += deltaNorm;
maxXY += deltaNorm;
break;
case CropHandle::NONE:
return; // No change
}
// Ensure min < max temporarily before aspect constraint
if (minXY.x > maxXY.x)
ImSwap(minXY.x, maxXY.x);
if (minXY.y > maxXY.y)
ImSwap(minXY.y, maxXY.y);
// Apply Aspect Ratio Constraint (if aspectRatio > 0)
if (aspectRatio > 0.0f && handle != CropHandle::INSIDE &&
handle != CropHandle::NONE)
{
float currentW = maxXY.x - minXY.x;
float currentH = maxXY.y - minXY.y;
if (currentW < 1e-5f)
currentW = 1e-5f; // Avoid division by zero
if (currentH < 1e-5f)
currentH = 1e-5f;
float currentAspect = currentW / currentH;
float targetAspect = aspectRatio;
// Determine which dimension to adjust based on which handle was moved and
// aspect delta Simplified approach: Adjust height based on width, unless
// moving top/bottom handles primarily
bool adjustHeight = true;
if (handle == CropHandle::TOP || handle == CropHandle::BOTTOM)
{
adjustHeight = false; // Primarily adjust width based on height change
}
if (adjustHeight)
{ // Adjust height based on width
float targetH = currentW / targetAspect;
float deltaH = targetH - currentH;
// Distribute height change based on handle
if (handle == CropHandle::TOP_LEFT || handle == CropHandle::TOP_RIGHT ||
handle == CropHandle::TOP)
{
minXY.y -= deltaH; // Adjust top edge
}
else
{
maxXY.y += deltaH; // Adjust bottom edge (or split for side handles?)
// For LEFT/RIGHT handles, could split deltaH: minXY.y -= deltaH*0.5;
// maxXY.y += deltaH*0.5;
}
}
else
{ // Adjust width based on height
float targetW = currentH * targetAspect;
float deltaW = targetW - currentW;
// Distribute width change based on handle
if (handle == CropHandle::TOP_LEFT || handle == CropHandle::BOTTOM_LEFT ||
handle == CropHandle::LEFT)
{
minXY.x -= deltaW; // Adjust left edge
}
else
{
maxXY.x += deltaW; // Adjust right edge
// For TOP/BOTTOM handles, could split deltaW: minXY.x -= deltaW*0.5;
// maxXY.x += deltaW*0.5;
}
}
} // End aspect ratio constraint
// Update the output rectNorm
rectNorm = ImVec4(minXY.x, minXY.y, maxXY.x, maxXY.y);
}
// Helper function to crop AppImage data
bool ApplyCropToImage(AppImage &image, const ImVec4 cropRectNorm)
{
if (image.isEmpty())
{
fprintf(stderr, "ApplyCropToImage: Input image is empty.\n");
return false;
}
if (cropRectNorm.x >= cropRectNorm.z || cropRectNorm.y >= cropRectNorm.w)
{
fprintf(
stderr,
"ApplyCropToImage: Invalid crop rectangle (zero or negative size).\n");
return false; // Invalid crop rect
}
// Clamp rect just in case
ImVec4 clampedRect = cropRectNorm;
clampedRect.x = ImClamp(clampedRect.x, 0.0f, 1.0f);
clampedRect.y = ImClamp(clampedRect.y, 0.0f, 1.0f);
clampedRect.z = ImClamp(clampedRect.z, 0.0f, 1.0f);
clampedRect.w = ImClamp(clampedRect.w, 0.0f, 1.0f);
// Calculate pixel coordinates
int srcW = image.getWidth();
int srcH = image.getHeight();
int channels = image.getChannels();
int cropX_px = static_cast<int>(round(clampedRect.x * srcW));
int cropY_px = static_cast<int>(round(clampedRect.y * srcH));
int cropMaxX_px = static_cast<int>(round(clampedRect.z * srcW));
int cropMaxY_px = static_cast<int>(round(clampedRect.w * srcH));
int cropW_px = cropMaxX_px - cropX_px;
int cropH_px = cropMaxY_px - cropY_px;
if (cropW_px <= 0 || cropH_px <= 0)
{
fprintf(
stderr,
"ApplyCropToImage: Resulting crop size is zero or negative (%dx%d).\n",
cropW_px, cropH_px);
return false;
}
printf("Applying crop: Start=(%d,%d), Size=(%dx%d)\n", cropX_px, cropY_px,
cropW_px, cropH_px);
// Create new image for cropped data
AppImage croppedImage(cropW_px, cropH_px, channels);
if (croppedImage.isEmpty())
{
fprintf(stderr,
"ApplyCropToImage: Failed to allocate memory for cropped image.\n");
return false;
}
croppedImage.m_isLinear = image.isLinear(); // Preserve flags
croppedImage.m_colorSpaceName = image.getColorSpaceName();
// TODO: Copy metadata/ICC profile if needed? Cropping usually invalidates
// some metadata.
const float *srcData = image.getData();
float *dstData = croppedImage.getData();
// Copy pixel data row by row, channel by channel
for (int y_dst = 0; y_dst < cropH_px; ++y_dst)
{
int y_src = cropY_px + y_dst;
// Ensure source Y is valid (should be due to clamping/checks, but be safe)
if (y_src < 0 || y_src >= srcH)
continue;
// Calculate start pointers for source and destination rows
const float *srcRowStart =
srcData + (static_cast<size_t>(y_src) * srcW + cropX_px) * channels;
float *dstRowStart =
dstData + (static_cast<size_t>(y_dst) * cropW_px) * channels;
// Copy the entire row (width * channels floats)
std::memcpy(dstRowStart, srcRowStart,
static_cast<size_t>(cropW_px) * channels * sizeof(float));
}
// Replace the original image data with the cropped data
// Use std::move if AppImage supports move assignment for efficiency
image = std::move(croppedImage);
printf("Cropped image created successfully (%dx%d).\n", image.getWidth(),
image.getHeight());
return true;
}
void InitShaderOperations(const std::string &shaderBasePath)
{
// Clear existing (if any)
g_allOperations.clear();
g_pipeline.activeOperations
.clear(); // Also clear the active list in the pipeline
// --- Define Operations ---
// Use unique_ptr for automatic memory management
// Match uniform names to the GLSL shaders
auto whiteBalanceOp = std::make_unique<PipelineOperation>("White Balance");
whiteBalanceOp->shaderProgram =
LoadShaderProgramFromFiles(shaderBasePath + "passthrough.vert",
shaderBasePath + "white_balance.frag");
if (whiteBalanceOp->shaderProgram)
{
whiteBalanceOp->uniforms["temperatureValue"] = {"temperature"};
whiteBalanceOp->uniforms["tintValue"] = {"tint"};
whiteBalanceOp->temperatureVal = &temperature;
whiteBalanceOp->tintVal = &tint;
whiteBalanceOp->FindUniformLocations();
g_allOperations.push_back(std::move(whiteBalanceOp));
printf(" + Loaded White Balance\n");
}
else
printf(" - FAILED White Balance\n");
auto exposureOp = std::make_unique<PipelineOperation>("Exposure");
exposureOp->shaderProgram = LoadShaderProgramFromFiles(
shaderBasePath + "passthrough.vert", shaderBasePath + "exposure.frag");
exposureOp->uniforms["exposureValue"] = {"exposureValue"};
exposureOp->exposureVal = &exposure; // Link to global slider variable
exposureOp->FindUniformLocations();
g_allOperations.push_back(std::move(exposureOp));
auto contrastOp = std::make_unique<PipelineOperation>("Contrast");
contrastOp->shaderProgram = LoadShaderProgramFromFiles(
shaderBasePath + "passthrough.vert", shaderBasePath + "contrast.frag");
if (contrastOp->shaderProgram)
{
contrastOp->uniforms["contrastValue"] = {"contrastValue"};
contrastOp->contrastVal = &contrast;
contrastOp->FindUniformLocations();
g_allOperations.push_back(std::move(contrastOp));
printf(" + Loaded Contrast\n");
}
else
printf(" - FAILED Contrast\n");
auto highlightsShadowsOp =
std::make_unique<PipelineOperation>("Highlights/Shadows");
highlightsShadowsOp->shaderProgram =
LoadShaderProgramFromFiles(shaderBasePath + "passthrough.vert",
shaderBasePath + "highlights_shadows.frag");
if (highlightsShadowsOp->shaderProgram)
{
highlightsShadowsOp->uniforms["highlightsValue"] = {"highlightsValue"};
highlightsShadowsOp->uniforms["shadowsValue"] = {"shadowsValue"};
highlightsShadowsOp->highlightsVal = &highlights;
highlightsShadowsOp->shadowsVal = &shadows;
highlightsShadowsOp->FindUniformLocations();
g_allOperations.push_back(std::move(highlightsShadowsOp));
printf(" + Loaded Highlights/Shadows\n");
}
else
printf(" - FAILED Highlights/Shadows\n");
auto whiteBlackOp = std::make_unique<PipelineOperation>("Whites/Blacks");
whiteBlackOp->shaderProgram =
LoadShaderProgramFromFiles(shaderBasePath + "passthrough.vert",
shaderBasePath + "whites_blacks.frag");
if (whiteBlackOp->shaderProgram)
{
whiteBlackOp->uniforms["whitesValue"] = {"whitesValue"};
whiteBlackOp->uniforms["blacksValue"] = {"blacksValue"};
whiteBlackOp->whitesVal = &whites;
whiteBlackOp->blacksVal = &blacks;
whiteBlackOp->FindUniformLocations();
g_allOperations.push_back(std::move(whiteBlackOp));
printf(" + Loaded Whites/Blacks\n");
}
else
printf(" - FAILED Whites/Blacks\n");
auto textureOp = std::make_unique<PipelineOperation>("Texture");
textureOp->shaderProgram = LoadShaderProgramFromFiles(
shaderBasePath + "passthrough.vert", shaderBasePath + "texture.frag");
if (textureOp->shaderProgram)
{
textureOp->uniforms["textureValue"] = {"textureValue"};
textureOp->textureVal = &texture;
textureOp->FindUniformLocations();
g_allOperations.push_back(std::move(textureOp));
printf(" + Loaded Texture\n");
}
else
printf(" - FAILED Texture\n");
auto clarityOp = std::make_unique<PipelineOperation>("Clarity");
clarityOp->shaderProgram = LoadShaderProgramFromFiles(
shaderBasePath + "passthrough.vert", shaderBasePath + "clarity.frag");
if (clarityOp->shaderProgram)
{
clarityOp->uniforms["clarityValue"] = {"clarityValue"};
clarityOp->clarityVal = &clarity;
clarityOp->FindUniformLocations();
g_allOperations.push_back(std::move(clarityOp));
printf(" + Loaded Clarity\n");
}
else
printf(" - FAILED Clarity\n");
auto dehazeOp = std::make_unique<PipelineOperation>("Dehaze");
dehazeOp->shaderProgram = LoadShaderProgramFromFiles(
shaderBasePath + "passthrough.vert", shaderBasePath + "dehaze.frag");
if (dehazeOp->shaderProgram)
{
dehazeOp->uniforms["dehazeValue"] = {"dehazeValue"};
dehazeOp->dehazeVal = &dehaze;
dehazeOp->FindUniformLocations();
g_allOperations.push_back(std::move(dehazeOp));
printf(" + Loaded Dehaze\n");
}
else
printf(" - FAILED Dehaze\n");
auto saturationOp = std::make_unique<PipelineOperation>("Saturation");
saturationOp->shaderProgram = LoadShaderProgramFromFiles(
shaderBasePath + "passthrough.vert", shaderBasePath + "saturation.frag");
if (saturationOp->shaderProgram)
{
saturationOp->uniforms["saturationValue"] = {"saturationValue"};
saturationOp->saturationVal = &saturation;
saturationOp->FindUniformLocations();
g_allOperations.push_back(std::move(saturationOp));
printf(" + Loaded Saturation\n");
}
else
printf(" - FAILED Saturation\n");
auto vibranceOp = std::make_unique<PipelineOperation>("Vibrance");
vibranceOp->shaderProgram = LoadShaderProgramFromFiles(
shaderBasePath + "passthrough.vert", shaderBasePath + "vibrance.frag");
if (vibranceOp->shaderProgram)
{
vibranceOp->uniforms["vibranceValue"] = {"vibranceValue"};
vibranceOp->vibranceVal = &vibrance;
vibranceOp->FindUniformLocations();
g_allOperations.push_back(std::move(vibranceOp));
printf(" + Loaded Vibrance\n");
}
else
printf(" - FAILED Vibrance\n");
g_pipeline.activeOperations.clear();
for (const auto &op_ptr : g_allOperations)
{
if (op_ptr)
{ // Make sure pointer is valid
g_pipeline.activeOperations.push_back(
*op_ptr); // Add a *copy* to the active list
// Re-find locations for the copy (or ensure copy constructor handles it)
g_pipeline.activeOperations.back().FindUniformLocations();
// Copy the pointers to the actual slider variables
g_pipeline.activeOperations.back().exposureVal = op_ptr->exposureVal;
g_pipeline.activeOperations.back().contrastVal = op_ptr->contrastVal;
g_pipeline.activeOperations.back().clarityVal = op_ptr->clarityVal;
g_pipeline.activeOperations.back().highlightsVal = op_ptr->highlightsVal;
g_pipeline.activeOperations.back().shadowsVal = op_ptr->shadowsVal;
g_pipeline.activeOperations.back().whitesVal = op_ptr->whitesVal;
g_pipeline.activeOperations.back().blacksVal = op_ptr->blacksVal;
g_pipeline.activeOperations.back().textureVal = op_ptr->textureVal;
g_pipeline.activeOperations.back().dehazeVal = op_ptr->dehazeVal;
g_pipeline.activeOperations.back().saturationVal = op_ptr->saturationVal;
g_pipeline.activeOperations.back().vibranceVal = op_ptr->vibranceVal;
g_pipeline.activeOperations.back().temperatureVal =
op_ptr->temperatureVal;
g_pipeline.activeOperations.back().tintVal = op_ptr->tintVal;
// Set initial enabled state if needed (e.g., all enabled by default)
g_pipeline.activeOperations.back().enabled = true;
}
}
printf("Initialized %zu possible operations. %zu added to default active "
"pipeline.\n",
g_allOperations.size(), g_pipeline.activeOperations.size());
}
// Add this function somewhere accessible, e.g., before main()
void ComputeHistogramGPU(GLuint inputTextureID, int width, int height)
{
if (!g_histogramResourcesInitialized || inputTextureID == 0 || width <= 0 ||
height <= 0)
{
// Clear CPU data if not computed
std::fill(g_histogramDataCPU.begin(), g_histogramDataCPU.end(), 0);
g_histogramMaxCount = 1;
printf("Histogram resources not initialized or invalid input. Skipping "
"computation.\n");
return;
}
// 1. Clear the SSBO buffer data to zeros
glBindBuffer(GL_SHADER_STORAGE_BUFFER, g_histogramSSBO);
// Using glBufferSubData might be marginally faster than glClearBufferData if
// driver optimizes zeroing static std::vector<unsigned int>
// zeros(HISTOGRAM_BUFFER_SIZE, 0); // Create once
// glBufferSubData(GL_SHADER_STORAGE_BUFFER, 0, HISTOGRAM_BUFFER_SIZE *
// sizeof(unsigned int), zeros.data()); Or use glClearBufferData (often
// recommended)
GLuint zero = 0;
glClearBufferData(GL_SHADER_STORAGE_BUFFER, GL_R32UI, GL_RED_INTEGER,
GL_UNSIGNED_INT, &zero);
glBindBuffer(GL_SHADER_STORAGE_BUFFER, 0); // Unbind
// 2. Bind resources and dispatch compute shader
glUseProgram(g_histogramComputeShader);
// Bind input texture as image unit 0 (read-only)
// IMPORTANT: Ensure the format matches the compute shader layout qualifier
// (e.g., rgba8) If textureToDisplay is RGBA16F, you'd use layout(rgba16f) in
// shader
glBindImageTexture(0, inputTextureID, 0, GL_FALSE, 0, GL_READ_ONLY,
GL_RGBA16); // Assuming display texture is RGBA8
// Bind SSBO to binding point 1
glBindBufferBase(GL_SHADER_STORAGE_BUFFER, 1, g_histogramSSBO);
// Calculate number of work groups
GLuint workGroupSizeX = 16; // Must match layout in shader
GLuint workGroupSizeY = 16;
GLuint numGroupsX = (width + workGroupSizeX - 1) / workGroupSizeX;
GLuint numGroupsY = (height + workGroupSizeY - 1) / workGroupSizeY;
// Dispatch the compute shader
glDispatchCompute(numGroupsX, numGroupsY, 1);
// 3. Synchronization: Ensure compute shader writes finish before CPU reads
// buffer Use a memory barrier on the SSBO writes
glMemoryBarrier(GL_SHADER_STORAGE_BARRIER_BIT);
// Unbind resources (optional here, but good practice)
glBindBufferBase(GL_SHADER_STORAGE_BUFFER, 1, 0);
glBindImageTexture(0, 0, 0, GL_FALSE, 0, GL_READ_ONLY, GL_RGBA16);
glUseProgram(0);
// 4. Read histogram data back from SSBO to CPU vector
glBindBuffer(GL_SHADER_STORAGE_BUFFER, g_histogramSSBO);
glGetBufferSubData(GL_SHADER_STORAGE_BUFFER, 0,
HISTOGRAM_BUFFER_SIZE * sizeof(unsigned int),
g_histogramDataCPU.data());
glBindBuffer(GL_SHADER_STORAGE_BUFFER, 0); // Unbind
// 5. Find the maximum count for scaling the plot (optional, can be capped)
g_histogramMaxCount = 255; // Reset to 255 (prevents div by zero)
for (unsigned int count : g_histogramDataCPU)
{
if (count > g_histogramMaxCount)
{
g_histogramMaxCount = count;
}
}
// Optional: Cap max count to prevent extreme peaks from flattening the rest
// unsigned int capThreshold = (width * height) / 50; // e.g., cap at 2% of
// pixels g_histogramMaxCount = std::min(g_histogramMaxCount, capThreshold);
// if (g_histogramMaxCount == 0) g_histogramMaxCount = 1; // Ensure not zero
// after capping
GLenum err = glGetError();
if (err != GL_NO_ERROR)
{
fprintf(stderr, "OpenGL Error during histogram computation/readback: %u\n",
err);
// Optionally clear CPU data on error
std::fill(g_histogramDataCPU.begin(), g_histogramDataCPU.end(), 0);
g_histogramMaxCount = 1;
printf("Histogram computation failed. Data cleared.\n");
}
else
{
printf("Histogram computed. Max count: %u\n", g_histogramMaxCount);
}
}
// Add this function somewhere accessible, e.g., before main()
void DrawHistogramWidget(const char *widgetId, ImVec2 graphSize)
{
if (g_histogramDataCPU.empty() ||
g_histogramMaxCount <= 1)
{ // Check if data is valid
if (g_histogramDataCPU.empty())
{
ImGui::Text("Histogram data not initialized.");
}
else
{
ImGui::Text("Histogram data is empty or invalid.");
}
if (g_histogramMaxCount <= 1)
{
ImGui::Text("Histogram max count is invalid.");
}
ImGui::Text("Histogram data not available.");
return;
}
ImGui::PushID(widgetId); // Isolate widget IDs
ImDrawList *drawList = ImGui::GetWindowDrawList();
const ImVec2 widgetPos = ImGui::GetCursorScreenPos();
// Determine actual graph size (negative values mean use available space)
if (graphSize.x <= 0.0f)
graphSize.x = ImGui::GetContentRegionAvail().x;
if (graphSize.y <= 0.0f)
graphSize.y = 100.0f; // Default height
// Draw background for the histogram area (optional)
drawList->AddRectFilled(widgetPos, widgetPos + graphSize,
IM_COL32(30, 30, 30, 200));
// Calculate scaling factors
float barWidth = graphSize.x / float(NUM_HISTOGRAM_BINS);
float scaleY =
graphSize.y / float(g_histogramMaxCount); // Scale based on max count
// Define colors (with some transparency for overlap visibility)
const ImU32 colR = IM_COL32(255, 0, 0, 180);
const ImU32 colG = IM_COL32(0, 255, 0, 180);
const ImU32 colB = IM_COL32(0, 0, 255, 180);
// Draw the histogram bars (R, G, B)
for (int i = 0; i < NUM_HISTOGRAM_BINS; ++i)
{
// Get heights (clamped to graph size)
float hR = ImMin(float(g_histogramDataCPU[i]) * scaleY, graphSize.y);
float hG = ImMin(float(g_histogramDataCPU[i + NUM_HISTOGRAM_BINS]) * scaleY,
graphSize.y);
float hB =
ImMin(float(g_histogramDataCPU[i + NUM_HISTOGRAM_BINS * 2]) * scaleY,
graphSize.y);
// Calculate bar positions
float x0 = widgetPos.x + float(i) * barWidth;
float x1 = x0 + barWidth; // Use lines if bars are too thin, or thin rects
float yBase = widgetPos.y + graphSize.y; // Bottom of the graph
// Draw lines or thin rectangles (lines are often better for dense
// histograms) Overlap/Blend: Draw B, then G, then R so Red is most
// prominent? Or use alpha blending.
if (hB > 0)
drawList->AddLine(ImVec2(x0 + barWidth * 0.5f, yBase),
ImVec2(x0 + barWidth * 0.5f, yBase - hB), colB, 1.0f);
if (hG > 0)
drawList->AddLine(ImVec2(x0 + barWidth * 0.5f, yBase),
ImVec2(x0 + barWidth * 0.5f, yBase - hG), colG, 1.0f);
if (hR > 0)
drawList->AddLine(ImVec2(x0 + barWidth * 0.5f, yBase),
ImVec2(x0 + barWidth * 0.5f, yBase - hR), colR, 1.0f);
// --- Alternative: Rectangles (might overlap heavily) ---
// if (hB > 0) drawList->AddRectFilled(ImVec2(x0, yBase - hB), ImVec2(x1,
// yBase), colB); if (hG > 0) drawList->AddRectFilled(ImVec2(x0, yBase -
// hG), ImVec2(x1, yBase), colG); if (hR > 0)
// drawList->AddRectFilled(ImVec2(x0, yBase - hR), ImVec2(x1, yBase), colR);
}
// Draw border around the histogram area (optional)
drawList->AddRect(widgetPos, widgetPos + graphSize,
IM_COL32(150, 150, 150, 255));
// Advance cursor past the histogram widget area
ImGui::Dummy(graphSize);
ImGui::PopID(); // Restore ID stack
}
// Main code
int main(int, char **)
{
// Setup SDL
if (SDL_Init(SDL_INIT_VIDEO | SDL_INIT_TIMER | SDL_INIT_GAMECONTROLLER) !=
0)
{
printf("Error: %s\n", SDL_GetError());
return -1;
}
// Decide GL+GLSL versions
#if defined(IMGUI_IMPL_OPENGL_ES2)
// GL ES 2.0 + GLSL 100 (WebGL 1.0)
const char *glsl_version = "#version 100";
SDL_GL_SetAttribute(SDL_GL_CONTEXT_FLAGS, 0);
SDL_GL_SetAttribute(SDL_GL_CONTEXT_PROFILE_MASK, SDL_GL_CONTEXT_PROFILE_ES);
SDL_GL_SetAttribute(SDL_GL_CONTEXT_MAJOR_VERSION, 2);
SDL_GL_SetAttribute(SDL_GL_CONTEXT_MINOR_VERSION, 0);
#elif defined(IMGUI_IMPL_OPENGL_ES3)
// GL ES 3.0 + GLSL 300 es (WebGL 2.0)
const char *glsl_version = "#version 300 es";
SDL_GL_SetAttribute(SDL_GL_CONTEXT_FLAGS, 0);
SDL_GL_SetAttribute(SDL_GL_CONTEXT_PROFILE_MASK, SDL_GL_CONTEXT_PROFILE_ES);
SDL_GL_SetAttribute(SDL_GL_CONTEXT_MAJOR_VERSION, 3);
SDL_GL_SetAttribute(SDL_GL_CONTEXT_MINOR_VERSION, 0);
#elif defined(__APPLE__)
// GL 3.2 Core + GLSL 150
const char *glsl_version = "#version 150";
SDL_GL_SetAttribute(
SDL_GL_CONTEXT_FLAGS,
SDL_GL_CONTEXT_FORWARD_COMPATIBLE_FLAG); // Always required on Mac
SDL_GL_SetAttribute(SDL_GL_CONTEXT_PROFILE_MASK, SDL_GL_CONTEXT_PROFILE_CORE);
SDL_GL_SetAttribute(SDL_GL_CONTEXT_MAJOR_VERSION, 3);
SDL_GL_SetAttribute(SDL_GL_CONTEXT_MINOR_VERSION, 2);
#else
// GL 3.0 + GLSL 130
const char *glsl_version = "#version 130";
SDL_GL_SetAttribute(SDL_GL_CONTEXT_FLAGS, 0);
SDL_GL_SetAttribute(SDL_GL_CONTEXT_PROFILE_MASK, SDL_GL_CONTEXT_PROFILE_CORE);
SDL_GL_SetAttribute(SDL_GL_CONTEXT_MAJOR_VERSION, 3);
SDL_GL_SetAttribute(SDL_GL_CONTEXT_MINOR_VERSION, 0);
#endif
// From 2.0.18: Enable native IME.
#ifdef SDL_HINT_IME_SHOW_UI
SDL_SetHint(SDL_HINT_IME_SHOW_UI, "1");
#endif
// Create window with graphics context
SDL_GL_SetAttribute(SDL_GL_DOUBLEBUFFER, 1);
SDL_GL_SetAttribute(SDL_GL_DEPTH_SIZE, 24);
SDL_GL_SetAttribute(SDL_GL_STENCIL_SIZE, 8);
SDL_WindowFlags window_flags =
(SDL_WindowFlags)(SDL_WINDOW_OPENGL | SDL_WINDOW_RESIZABLE |
SDL_WINDOW_ALLOW_HIGHDPI);
SDL_Window *window =
SDL_CreateWindow("tedit", SDL_WINDOWPOS_CENTERED, SDL_WINDOWPOS_CENTERED,
1280, 720, window_flags);
if (window == nullptr)
{
printf("Error: SDL_CreateWindow(): %s\n", SDL_GetError());
return -1;
}
SDL_GLContext gl_context = SDL_GL_CreateContext(window);
if (gl_context == nullptr)
{
printf("Error: SDL_GL_CreateContext(): %s\n", SDL_GetError());
return -1;
}
SDL_GL_MakeCurrent(window, gl_context);
SDL_GL_SetSwapInterval(1); // Enable vsync
glewExperimental = GL_TRUE; // Needed for core profile
GLenum err = glewInit();
if (err != GLEW_OK)
{
fprintf(stderr, "Error: %s\n", glewGetErrorString(err));
return -1;
}
// Setup Dear ImGui context
IMGUI_CHECKVERSION();
ImGui::CreateContext();
ImGuiIO &io = ImGui::GetIO();
(void)io;
io.ConfigFlags |=
ImGuiConfigFlags_NavEnableKeyboard; // Enable Keyboard Controls
io.ConfigFlags |=
ImGuiConfigFlags_NavEnableGamepad; // Enable Gamepad Controls
io.ConfigFlags |= ImGuiConfigFlags_DockingEnable; // Enable Docking
// io.ConfigFlags |= ImGuiConfigFlags_ViewportsEnable; // Enable
// Multi-Viewport / Platform Windows io.ConfigViewportsNoAutoMerge = true;
// io.ConfigViewportsNoTaskBarIcon = true;
// Setup Dear ImGui style
ImGui::StyleColorsDark();
// ImGui::StyleColorsLight();
// When viewports are enabled we tweak WindowRounding/WindowBg so platform
// windows can look identical to regular ones.
ImGuiStyle &style = ImGui::GetStyle();
if (io.ConfigFlags & ImGuiConfigFlags_ViewportsEnable)
{
style.WindowRounding = 0.0f;
style.Colors[ImGuiCol_WindowBg].w = 1.0f;
}
// Setup Platform/Renderer backends
ImGui_ImplSDL2_InitForOpenGL(window, gl_context);
ImGui_ImplOpenGL3_Init(glsl_version);
// Our state
ImVec4 clear_color = ImVec4(0.45f, 0.55f, 0.60f, 1.00f);
g_openFileDialog.SetTitle("Open Image File");
// Add common image formats and typical RAW formats
g_openFileDialog.SetTypeFilters({
".jpg", ".jpeg", ".png", ".tif", ".tiff", // Standard formats
".arw", ".cr2", ".cr3", ".nef", ".dng", ".orf", ".raf",
".rw2", // Common RAW
".*" // Allow any file as fallback
});
g_exportSaveFileDialog.SetTitle("Export Image As");
// Type filters for saving are less critical as we force the extension later,
// but can be helpful for user navigation. Let's set a default.
g_exportSaveFileDialog.SetTypeFilters({".jpg", ".png", ".tif"});
AppImage g_loadedImage; // Your loaded image data
bool g_imageIsLoaded = false;
g_processedTextureId = 0; // Initialize processed texture ID
printf("Initializing image processing pipeline...\n");
g_pipeline.Init("shaders/"); // Assuming shaders are in shaders/ subdir
ImGuiTexInspect::ImplOpenGL3_Init(); // Or DirectX 11 equivalent (check your
// chosen backend header file)
ImGuiTexInspect::Init();
ImGuiTexInspect::CreateContext();
InitShaderOperations("shaders/"); // Initialize shader operations
if (!InitHistogramResources("shaders/"))
{
// Handle error - maybe disable histogram feature
fprintf(stderr, "Histogram initialization failed, feature disabled.\n");
}
// Main loop
bool done = false;
#ifdef __EMSCRIPTEN__
// For an Emscripten build we are disabling file-system access, so let's not
// attempt to do a fopen() of the imgui.ini file. You may manually call
// LoadIniSettingsFromMemory() to load settings from your own storage.
io.IniFilename = nullptr;
EMSCRIPTEN_MAINLOOP_BEGIN
#else
while (!done)
#endif
{
// Poll and handle events (inputs, window resize, etc.)
// You can read the io.WantCaptureMouse, io.WantCaptureKeyboard flags to
// tell if dear imgui wants to use your inputs.
// - When io.WantCaptureMouse is true, do not dispatch mouse input data to
// your main application, or clear/overwrite your copy of the mouse data.
// - When io.WantCaptureKeyboard is true, do not dispatch keyboard input
// data to your main application, or clear/overwrite your copy of the
// keyboard data. Generally you may always pass all inputs to dear imgui,
// and hide them from your application based on those two flags.
SDL_Event event;
while (SDL_PollEvent(&event))
{
ImGui_ImplSDL2_ProcessEvent(&event);
if (event.type == SDL_QUIT)
done = true;
if (event.type == SDL_WINDOWEVENT &&
event.window.event == SDL_WINDOWEVENT_CLOSE &&
event.window.windowID == SDL_GetWindowID(window))
done = true;
}
if (SDL_GetWindowFlags(window) & SDL_WINDOW_MINIMIZED)
{
SDL_Delay(10);
continue;
}
// Start the Dear ImGui frame
ImGui_ImplOpenGL3_NewFrame();
ImGui_ImplSDL2_NewFrame();
ImGui::NewFrame();
GLuint textureToDisplay = 0; // Use a local var for clarity
GLuint textureToSave = 0; // Texture ID holding final linear data for saving
if (g_imageIsLoaded && g_loadedImage.m_textureId != 0)
{
// Update pipeline's knowledge of color spaces (might trigger MarkDirty inside if they change)
// Ideally, check if they *actually* changed before marking dirty.
if (g_pipeline.inputColorSpace != g_inputColorSpace)
{
g_pipeline.inputColorSpace = g_inputColorSpace;
g_pipeline.MarkDirty();
}
if (g_pipeline.outputColorSpace != g_outputColorSpace)
{
g_pipeline.outputColorSpace = g_outputColorSpace;
g_pipeline.MarkDirty();
}
bool recomputeHisto = false;
if (g_pipeline.IsDirty())
{
recomputeHisto = true;
}
// Get potentially cached textures
textureToDisplay = g_pipeline.GetProcessedTexture(
g_loadedImage.m_textureId,
g_loadedImage.getWidth(),
g_loadedImage.getHeight(),
true // Request texture suitable for display (potentially sRGB)
);
textureToSave = g_pipeline.GetProcessedTexture(
g_loadedImage.m_textureId,
g_loadedImage.getWidth(),
g_loadedImage.getHeight(),
false // Request texture suitable for saving (linear)
);
// Update histogram only if the display texture is valid
if (recomputeHisto && textureToDisplay != 0)
{
// Optional optimization: Only compute histogram if pipeline was dirty this frame?
// Or maybe compute less frequently? For now, compute if texture is valid.
ComputeHistogramGPU(textureToDisplay, g_loadedImage.getWidth(), g_loadedImage.getHeight());
}
}
else
{
textureToDisplay = 0;
textureToSave = 0;
// Ensure pipeline cache is cleared if no image is loaded
g_pipeline.GetProcessedTexture(0, 0, 0, true); // Call with invalid input clears cache
// Clear histogram data if no image loaded
std::fill(g_histogramDataCPU.begin(), g_histogramDataCPU.end(), 0);
g_histogramMaxCount = 1;
}
// --- Menu Bar ---
if (ImGui::BeginMainMenuBar())
{
if (ImGui::BeginMenu("File"))
{
if (ImGui::MenuItem("Open...", "Ctrl+O"))
{
g_openFileDialog.Open();
}
// Disable Export if no image is loaded
if (ImGui::MenuItem("Export...", "Ctrl+E", false, g_imageIsLoaded))
{
g_exportErrorMsg = ""; // Clear previous errors
g_showExportWindow = true; // <<< Set the flag to show the window
}
ImGui::Separator();
if (ImGui::MenuItem("Exit"))
{
done = true; // Simple exit for now
}
ImGui::EndMenu();
}
// ... other menus ...
ImGui::EndMainMenuBar();
}
// --- File Dialog Display & Handling ---
g_openFileDialog.Display();
g_exportSaveFileDialog.Display();
if (g_openFileDialog.HasSelected())
{
std::string selectedPath = g_openFileDialog.GetSelected().string();
g_openFileDialog.ClearSelected();
printf("Opening file: %s\n", selectedPath.c_str());
// --- Load the selected image ---
std::optional<AppImage> imgOpt = loadImage(selectedPath);
if (imgOpt)
{
// If an image was already loaded, clean up its texture first
if (g_loadedImage.m_textureId != 0)
{
glDeleteTextures(1, &g_loadedImage.m_textureId);
g_loadedImage.m_textureId = 0;
}
// Clean up pipeline resources (FBOs/Textures) before loading new
// texture
g_pipeline.ResetResources(); // <<< NEED TO ADD THIS METHOD
g_loadedImage = std::move(*imgOpt);
printf("Image loaded (%dx%d, %d channels, Linear:%s)\n",
g_loadedImage.getWidth(), g_loadedImage.getHeight(),
g_loadedImage.getChannels(),
g_loadedImage.isLinear() ? "Yes" : "No");
if (loadImageTexture(g_loadedImage))
{
g_imageIsLoaded = true;
g_currentFilePath = selectedPath; // Store path
printf("Float texture created successfully (ID: %u).\n",
g_loadedImage.m_textureId);
// Maybe reset sliders/pipeline state? Optional.
}
else
{
g_imageIsLoaded = false;
g_currentFilePath = "";
fprintf(stderr, "Failed to load image into GL texture.\n");
// TODO: Show error to user (e.g., modal popup)
}
}
else
{
g_imageIsLoaded = false;
g_currentFilePath = "";
fprintf(stderr, "Failed to load image file: %s\n",
selectedPath.c_str());
// TODO: Show error to user
}
}
if (g_showExportWindow) // <<< Only attempt to draw if flag is true
{
// Optional: Center the window the first time it appears
ImGui::SetNextWindowSize(ImVec2(400, 0),
ImGuiCond_Appearing); // Auto-height
ImVec2 center = ImGui::GetMainViewport()->GetCenter();
ImGui::SetNextWindowPos(center, ImGuiCond_Appearing, ImVec2(0.5f, 0.5f));
// Begin a standard window. Pass &g_showExportWindow to enable the 'X'
// button.
if (ImGui::Begin("Export Settings", &g_showExportWindow,
ImGuiWindowFlags_AlwaysAutoResize))
{
ImGui::Text("Choose Export Format and Settings:");
ImGui::Separator();
// --- Format Selection ---
ImGui::Text("Format:");
ImGui::SameLine();
// ... (Combo box logic for g_exportFormat remains the same) ...
const char *formats[] = {"JPEG", "PNG (8-bit)", "PNG (16-bit)",
"TIFF (8-bit)", "TIFF (16-bit)"};
int currentFormatIndex = 0;
switch (g_exportFormat)
{ /* ... map g_exportFormat to index ... */
}
if (ImGui::Combo("##ExportFormat", &currentFormatIndex, formats,
IM_ARRAYSIZE(formats)))
{
switch (currentFormatIndex)
{ /* ... map index back to g_exportFormat
... */
}
g_exportErrorMsg = "";
}
// --- Format Specific Options ---
if (g_exportFormat == ImageSaveFormat::JPEG)
{
ImGui::SliderInt("Quality", &g_exportQuality, 1, 100);
}
else
{
ImGui::Dummy(ImVec2(
0.0f,
ImGui::GetFrameHeightWithSpacing())); // Keep consistent height
}
ImGui::Separator();
// --- Display Error Messages ---
if (!g_exportErrorMsg.empty())
{
ImGui::PushStyleColor(ImGuiCol_Text, ImVec4(1.0f, 0.2f, 0.2f, 1.0f));
ImGui::TextWrapped("Error: %s", g_exportErrorMsg.c_str());
ImGui::PopStyleColor();
ImGui::Separator();
}
// --- Action Buttons ---
if (ImGui::Button("Save As...", ImVec2(120, 0)))
{
// ... (Logic to set default name/path and call
// g_exportSaveFileDialog.Open() remains the same) ...
std::filesystem::path currentPath(g_currentFilePath);
std::string defaultName = currentPath.stem().string() + "_edited";
g_exportSaveFileDialog.SetPwd(currentPath.parent_path());
// g_exportSaveFileDialog.SetInputName(defaultName); // If supported
g_exportSaveFileDialog.Open();
}
ImGui::SameLine();
// No need for an explicit Cancel button if the 'X' works, but can keep
// it:
if (ImGui::Button("Cancel", ImVec2(120, 0)))
{
g_showExportWindow = false; // Close the window by setting the flag
}
} // Matches ImGui::Begin("Export Settings",...)
ImGui::End(); // IMPORTANT: Always call End() for Begin()
} // End of if(g_showExportWindow)
// --- Handle Export Save Dialog Selection ---
if (g_exportSaveFileDialog.HasSelected())
{
// ... (Your existing logic to get path, correct extension) ...
std::filesystem::path savePathFs = g_exportSaveFileDialog.GetSelected();
g_exportSaveFileDialog.ClearSelected();
std::string savePath = savePathFs.string();
// ... (Ensure/correct extension logic) ...
// --- Get Processed Image Data & Save ---
printf("Attempting to save to: %s\n", savePath.c_str());
g_exportErrorMsg = "";
if (textureToSave != 0)
{
AppImage exportImageRGBA; // Name it clearly - it holds RGBA data
printf("Reading back texture ID %u for saving...\n", textureToSave);
if (ReadTextureToAppImage(textureToSave, g_loadedImage.getWidth(),
g_loadedImage.getHeight(), exportImageRGBA))
{
printf("Texture readback successful, saving...\n");
// <<< --- ADD CONVERSION LOGIC HERE --- >>>
bool saveResult = false;
if (g_exportFormat == ImageSaveFormat::JPEG)
{
// JPEG cannot handle 4 channels, convert to 3 (RGB)
if (exportImageRGBA.getChannels() == 4)
{
printf("JPEG selected: Converting 4-channel RGBA to 3-channel "
"RGB...\n");
AppImage exportImageRGB(exportImageRGBA.getWidth(),
exportImageRGBA.getHeight(), 3);
// Check allocation success? (Should be fine if RGBA worked)
const float *rgbaData = exportImageRGBA.getData();
float *rgbData = exportImageRGB.getData();
size_t numPixels =
exportImageRGBA.getWidth() * exportImageRGBA.getHeight();
for (size_t i = 0; i < numPixels; ++i)
{
// Copy R, G, B; discard A
rgbData[i * 3 + 0] = rgbaData[i * 4 + 0]; // R
rgbData[i * 3 + 1] = rgbaData[i * 4 + 1]; // G
rgbData[i * 3 + 2] = rgbaData[i * 4 + 2]; // B
}
exportImageRGB.m_isLinear =
exportImageRGBA.isLinear(); // Preserve linearity flag
exportImageRGB.m_colorSpaceName =
exportImageRGBA
.getColorSpaceName(); // Preserve colorspace info
printf("Conversion complete, saving RGB data...\n");
saveResult = saveImage(exportImageRGB, savePath, g_exportFormat,
g_exportQuality);
}
else
{
// Source wasn't 4 channels? Unexpected, but save it directly.
printf("Warning: Expected 4 channels for JPEG conversion, got "
"%d. Saving directly...\n",
exportImageRGBA.getChannels());
saveResult = saveImage(exportImageRGBA, savePath, g_exportFormat,
g_exportQuality);
}
}
else
{
// Format is PNG or TIFF, which should handle 4 channels (or 1/3)
printf("Saving image with original channels (%d) for PNG/TIFF...\n",
exportImageRGBA.getChannels());
saveResult = saveImage(exportImageRGBA, savePath, g_exportFormat,
g_exportQuality);
}
// <<< --- END CONVERSION LOGIC --- >>>
if (saveResult)
{
printf("Image saved successfully!\n");
g_showExportWindow =
false; // <<< Close the settings window on success
}
else
{
fprintf(stderr, "Failed to save image.\n");
g_exportErrorMsg = "Failed to save image data to file.";
}
}
else
{
fprintf(stderr, "Failed to read back texture data from GPU.\n");
g_exportErrorMsg = "Failed to read processed image data from GPU.";
}
}
else
{
fprintf(stderr, "Cannot save: Invalid processed texture ID.\n");
g_exportErrorMsg = "No valid processed image data available to save.";
}
}
static bool use_dockspace = true;
if (use_dockspace)
{
ImGuiViewport *viewport = ImGui::GetMainViewport();
ImGuiID dockspace_id = ImGui::GetID("MyDockSpace");
// Use DockSpaceOverViewport instead of creating a manual window
// Set the viewport size for the dockspace node. This is important.
ImGui::SetNextWindowPos(viewport->WorkPos);
ImGui::SetNextWindowSize(viewport->WorkSize);
ImGui::SetNextWindowViewport(viewport->ID);
// Use PassthruCentralNode to make the central node background transparent
// so the ImGui default background shows until a window is docked there.
ImGuiDockNodeFlags dockspace_flags =
ImGuiDockNodeFlags_PassthruCentralNode;
// We wrap the DockSpace call in a window that doesn't really draw
// anything itself, but is required by the DockBuilder mechanism to target
// the space. Make it borderless, no title, etc.
ImGuiWindowFlags host_window_flags = 0;
host_window_flags |= ImGuiWindowFlags_NoTitleBar |
ImGuiWindowFlags_NoCollapse |
ImGuiWindowFlags_NoResize | ImGuiWindowFlags_NoMove;
host_window_flags |=
ImGuiWindowFlags_NoBringToFrontOnFocus | ImGuiWindowFlags_NoNavFocus;
host_window_flags |=
ImGuiWindowFlags_NoBackground; // Make the host window transparent
ImGui::PushStyleVar(ImGuiStyleVar_WindowRounding, 0.0f);
ImGui::PushStyleVar(ImGuiStyleVar_WindowBorderSize, 0.0f);
ImGui::PushStyleVar(ImGuiStyleVar_WindowPadding, ImVec2(0.0f, 0.0f));
ImGui::Begin("DockSpaceWindowHost", nullptr,
host_window_flags); // No bool* needed
ImGui::PopStyleVar(3);
// Create the actual dockspace area.
ImGui::DockSpace(dockspace_id, ImVec2(0.0f, 0.0f), dockspace_flags);
ImGui::End(); // End the transparent host window
// --- DockBuilder setup (runs once) ---
// This logic remains the same, targeting the dockspace_id
// Use DockBuilderGetNode()->IsEmpty() as a robust check for first time
// setup or reset.
ImGuiDockNode *centralNode = ImGui::DockBuilderGetNode(dockspace_id);
if (centralNode == nullptr || centralNode->IsEmpty())
{
printf("DockBuilder: Setting up initial layout for DockID %u\n",
dockspace_id);
ImGui::DockBuilderRemoveNode(
dockspace_id); // Clear out any previous state
ImGui::DockBuilderAddNode(dockspace_id, ImGuiDockNodeFlags_DockSpace);
ImGui::DockBuilderSetNodeSize(
dockspace_id, viewport->Size); // Set the size for the root node
ImGuiID dock_main_id =
dockspace_id; // This is the ID of the node just added
ImGuiID dock_right_id, dock_left_id, dock_center_id;
// Split right first (Edit Panel)
ImGui::DockBuilderSplitNode(dock_main_id, ImGuiDir_Right, 0.25f,
&dock_right_id, &dock_main_id);
// Then split left from the remaining main area (Exif Panel)
ImGui::DockBuilderSplitNode(
dock_main_id, ImGuiDir_Left, 0.25f, &dock_left_id,
&dock_center_id); // dock_center_id is the final remaining central
// node
// Dock the windows into the nodes
ImGui::DockBuilderDockWindow("Image Exif", dock_left_id);
ImGui::DockBuilderDockWindow("Edit Image", dock_right_id);
ImGui::DockBuilderDockWindow(
"Image View", dock_center_id); // Dock image view into the center
ImGui::DockBuilderFinish(dockspace_id);
printf("DockBuilder: Layout finished.\n");
}
// --- End DockBuilder setup ---
// --- Now Begin the actual windows that get docked ---
// These calls are now *outside* any manual container window.
// They will find their place in the dockspace based on the DockBuilder
// setup or user interaction.
// "Image View" window
ImGui::Begin("Image View");
// Display the texture that HAS the output conversion applied
ImVec2 imageWidgetTopLeftScreen =
ImGui::GetCursorScreenPos(); // Position BEFORE the inspector panel
ImVec2 availableContentSize =
ImGui::GetContentRegionAvail(); // Size available FOR the inspector
// panel
GLuint displayTexId = textureToDisplay; // Use the display texture ID
if (displayTexId != 0)
{
// Assume ImGuiTexInspect fills available space. This might need
// adjustment.
ImVec2 displaySize = availableContentSize;
float displayAspect = displaySize.x / displaySize.y;
float imageAspect =
float(g_loadedImage.getWidth()) / float(g_loadedImage.getHeight());
ImVec2 imageDisplaySize; // Actual size the image occupies on screen
// (letterboxed/pillarboxed)
ImVec2 imageDisplayOffset =
ImVec2(0, 0); // Offset within the widget area due to letterboxing
if (displayAspect > imageAspect)
{ // Display is wider than image ->
// letterbox (bars top/bottom)
imageDisplaySize.y = displaySize.y;
imageDisplaySize.x = imageDisplaySize.y * imageAspect;
imageDisplayOffset.x = (displaySize.x - imageDisplaySize.x) * 0.5f;
}
else
{ // Display is taller than image (or same aspect) -> pillarbox
// (bars left/right)
imageDisplaySize.x = displaySize.x;
imageDisplaySize.y = imageDisplaySize.x / imageAspect;
imageDisplayOffset.y = (displaySize.y - imageDisplaySize.y) * 0.5f;
}
ImVec2 imageTopLeftScreen =
imageWidgetTopLeftScreen + imageDisplayOffset;
ImVec2 imageBottomRightScreen = imageTopLeftScreen + imageDisplaySize;
// Use textureToDisplay here
ImGuiTexInspect::BeginInspectorPanel(
"Image Inspector", (ImTextureID)(intptr_t)displayTexId,
ImVec2(g_loadedImage.m_width, g_loadedImage.m_height),
ImGuiTexInspect::InspectorFlags_NoTooltip |
ImGuiTexInspect::InspectorFlags_NoGrid |
ImGuiTexInspect::InspectorFlags_NoForceFilterNearest,
ImGuiTexInspect::SizeIncludingBorder(availableContentSize));
ImGuiTexInspect::EndInspectorPanel();
// --- Draw Crop Overlay If Active ---
if (g_cropActive && g_imageIsLoaded)
{
ImDrawList *drawList = ImGui::GetForegroundDrawList();
ImGuiIO &io = ImGui::GetIO();
ImVec2 mousePos = io.MousePos;
// Calculate screen coords of the current crop rectangle
ImVec2 cropMinScreen =
imageTopLeftScreen +
ImVec2(g_cropRectNorm.x, g_cropRectNorm.y) * imageDisplaySize;
ImVec2 cropMaxScreen =
imageTopLeftScreen +
ImVec2(g_cropRectNorm.z, g_cropRectNorm.w) * imageDisplaySize;
ImVec2 cropSizeScreen = cropMaxScreen - cropMinScreen;
// Define handle size and interaction margin
float handleScreenSize = 8.0f;
float handleInteractionMargin =
handleScreenSize * 1.5f; // Larger click area
ImU32 colRect = IM_COL32(255, 255, 255, 200); // White rectangle
ImU32 colHandle = IM_COL32(255, 255, 255, 255); // Solid white handle
ImU32 colGrid = IM_COL32(200, 200, 200, 100); // Faint grid lines
ImU32 colHover = IM_COL32(255, 255, 0, 255); // Yellow highlight
// --- Define Handle Positions (screen coordinates) ---
// Corners
ImVec2 tl = cropMinScreen;
ImVec2 tr = ImVec2(cropMaxScreen.x, cropMinScreen.y);
ImVec2 bl = ImVec2(cropMinScreen.x, cropMaxScreen.y);
ImVec2 br = cropMaxScreen;
// Mid-edges
ImVec2 tm = ImVec2((tl.x + tr.x) * 0.5f, tl.y);
ImVec2 bm = ImVec2((bl.x + br.x) * 0.5f, bl.y);
ImVec2 lm = ImVec2(tl.x, (tl.y + bl.y) * 0.5f);
ImVec2 rm = ImVec2(tr.x, (tr.y + br.y) * 0.5f);
// Handle definitions for hit testing and drawing
struct HandleDef
{
CropHandle id;
ImVec2 pos;
};
HandleDef handles[] = {
{CropHandle::TOP_LEFT, tl}, {CropHandle::TOP_RIGHT, tr}, {CropHandle::BOTTOM_LEFT, bl}, {CropHandle::BOTTOM_RIGHT, br}, {CropHandle::TOP, tm}, {CropHandle::BOTTOM, bm}, {CropHandle::LEFT, lm}, {CropHandle::RIGHT, rm}};
// --- Interaction Handling ---
bool isHoveringAnyHandle = false;
CropHandle hoveredHandle = CropHandle::NONE;
// Only interact if window is hovered
if (ImGui::
IsWindowHovered()) // ImGuiHoveredFlags_AllowWhenBlockedByActiveItem
// might also be needed
{
// Check handles first (higher priority than inside rect)
for (const auto &h : handles)
{
ImRect handleRect(h.pos - ImVec2(handleInteractionMargin,
handleInteractionMargin),
h.pos + ImVec2(handleInteractionMargin,
handleInteractionMargin));
if (handleRect.Contains(mousePos))
{
hoveredHandle = h.id;
isHoveringAnyHandle = true;
break;
}
}
// Check inside rect if no handle hovered
ImRect insideRect(cropMinScreen, cropMaxScreen);
if (!isHoveringAnyHandle && insideRect.Contains(mousePos))
{
hoveredHandle = CropHandle::INSIDE;
}
// Mouse Down: Start dragging
if (hoveredHandle != CropHandle::NONE &&
ImGui::IsMouseClicked(ImGuiMouseButton_Left))
{
g_activeCropHandle = hoveredHandle;
g_isDraggingCrop = true;
g_dragStartMousePos = mousePos;
g_cropRectNormInitial =
g_cropRectNorm; // Store state at drag start
printf("Started dragging handle: %d\n", (int)g_activeCropHandle);
}
} // End IsWindowHovered check
// Mouse Drag: Update crop rectangle
if (g_isDraggingCrop &&
ImGui::IsMouseDragging(ImGuiMouseButton_Left))
{
ImVec2 mouseDeltaScreen = mousePos - g_dragStartMousePos;
// Convert delta to normalized image coordinates
ImVec2 mouseDeltaNorm = ImVec2(0, 0);
if (imageDisplaySize.x > 1e-3 &&
imageDisplaySize.y > 1e-3)
{ // Avoid division by zero
mouseDeltaNorm = mouseDeltaScreen / imageDisplaySize;
}
// Update g_cropRectNorm based on handle and delta
// Store temporary rect to apply constraints later
ImVec4 tempRect =
g_cropRectNormInitial; // Work from initial state + delta
// --- Update Logic (Needs Aspect Ratio Constraint Integration) ---
// [This part is complex - Simplified version below]
UpdateCropRect(tempRect, g_activeCropHandle, mouseDeltaNorm,
g_cropAspectRatio);
// Clamp final rect to 0-1 range and ensure min < max
tempRect.x = ImClamp(tempRect.x, 0.0f, 1.0f);
tempRect.y = ImClamp(tempRect.y, 0.0f, 1.0f);
tempRect.z = ImClamp(tempRect.z, 0.0f, 1.0f);
tempRect.w = ImClamp(tempRect.w, 0.0f, 1.0f);
if (tempRect.x > tempRect.z)
ImSwap(tempRect.x, tempRect.z);
if (tempRect.y > tempRect.w)
ImSwap(tempRect.y, tempRect.w);
// Prevent zero size rect? (Optional)
// float minSizeNorm = 0.01f; // e.g., 1% minimum size
// if (tempRect.z - tempRect.x < minSizeNorm) tempRect.z =
// tempRect.x + minSizeNorm; if (tempRect.w - tempRect.y <
// minSizeNorm) tempRect.w = tempRect.y + minSizeNorm;
g_cropRectNorm = tempRect; // Update the actual state
}
else if (g_isDraggingCrop &&
ImGui::IsMouseReleased(ImGuiMouseButton_Left))
{
// Mouse Release: Stop dragging
g_isDraggingCrop = false;
g_activeCropHandle = CropHandle::NONE;
printf("Stopped dragging crop.\n");
}
// --- Drawing ---
// Dimming overlay (optional) - Draw 4 rects outside the crop area
drawList->AddRectFilled(
imageTopLeftScreen,
ImVec2(cropMinScreen.x, imageBottomRightScreen.y),
IM_COL32(0, 0, 0, 100)); // Left
drawList->AddRectFilled(ImVec2(cropMaxScreen.x, imageTopLeftScreen.y),
imageBottomRightScreen,
IM_COL32(0, 0, 0, 100)); // Right
drawList->AddRectFilled(ImVec2(cropMinScreen.x, imageTopLeftScreen.y),
ImVec2(cropMaxScreen.x, cropMinScreen.y),
IM_COL32(0, 0, 0, 100)); // Top
drawList->AddRectFilled(
ImVec2(cropMinScreen.x, cropMaxScreen.y),
ImVec2(cropMaxScreen.x, imageBottomRightScreen.y),
IM_COL32(0, 0, 0, 100)); // Bottom
// Draw crop rectangle outline
drawList->AddRect(cropMinScreen, cropMaxScreen, colRect, 0.0f, 0,
1.5f);
// Draw grid lines (simple 3x3 grid)
float thirdW = cropSizeScreen.x / 3.0f;
float thirdH = cropSizeScreen.y / 3.0f;
drawList->AddLine(ImVec2(cropMinScreen.x + thirdW, cropMinScreen.y),
ImVec2(cropMinScreen.x + thirdW, cropMaxScreen.y),
colGrid, 1.0f);
drawList->AddLine(
ImVec2(cropMinScreen.x + thirdW * 2, cropMinScreen.y),
ImVec2(cropMinScreen.x + thirdW * 2, cropMaxScreen.y), colGrid,
1.0f);
drawList->AddLine(ImVec2(cropMinScreen.x, cropMinScreen.y + thirdH),
ImVec2(cropMaxScreen.x, cropMinScreen.y + thirdH),
colGrid, 1.0f);
drawList->AddLine(
ImVec2(cropMinScreen.x, cropMinScreen.y + thirdH * 2),
ImVec2(cropMaxScreen.x, cropMinScreen.y + thirdH * 2), colGrid,
1.0f);
// Draw handles
for (const auto &h : handles)
{
bool isHovered = (h.id == hoveredHandle);
bool isActive = (h.id == g_activeCropHandle);
drawList->AddRectFilled(
h.pos - ImVec2(handleScreenSize / 2, handleScreenSize / 2),
h.pos + ImVec2(handleScreenSize / 2, handleScreenSize / 2),
(isHovered || isActive) ? colHover : colHandle);
}
} // End if(g_cropActive)
}
else
{
// Show placeholder text if no image is loaded
ImVec2 winSize = ImGui::GetWindowSize();
ImVec2 textSize = ImGui::CalcTextSize("No Image Loaded");
ImGui::SetCursorPos(ImVec2((winSize.x - textSize.x) * 0.5f,
(winSize.y - textSize.y) * 0.5f));
ImGui::Text("No Image Loaded. File -> Open... to load an image");
std::fill(g_histogramDataCPU.begin(), g_histogramDataCPU.end(), 0);
g_histogramMaxCount = 1;
// Or maybe: "File -> Open... to load an image"
}
ImGui::End(); // End Image View
// "Image Exif" window
ImGui::Begin("Image Exif");
if (g_imageIsLoaded)
{
ImGui::Text("Image Width: %d", g_loadedImage.m_width);
ImGui::Text("Image Height: %d", g_loadedImage.m_height);
ImGui::Text("Image Loaded: %s", g_imageIsLoaded ? "Yes" : "No");
ImGui::Text("Image Channels: %d", g_loadedImage.m_channels);
ImGui::Text("Image Color Space: %s",
g_loadedImage.m_colorSpaceName.c_str());
ImGui::Text("Image ICC Profile Size: %zu bytes",
g_loadedImage.m_iccProfile.size());
ImGui::Text("Image Metadata Size: %zu bytes",
g_loadedImage.m_metadata.size());
ImGui::Separator();
ImGui::Text("Image Metadata: ");
for (const auto &entry : g_loadedImage.m_metadata)
{
ImGui::Text("%s: %s", entry.first.c_str(), entry.second.c_str());
}
} // Closing the if statement for g_imageIsLoaded
ImGui::End(); // End Image Exif
// "Edit Image" window
ImGui::Begin("Edit Image");
if (ImGui::CollapsingHeader("Histogram",
ImGuiTreeNodeFlags_DefaultOpen))
{
DrawHistogramWidget("ExifHistogram", ImVec2(-1, 256));
}
// --- Edit Image (Right) ---
ImGui::Begin("Edit Image");
// --- Pipeline Configuration ---
ImGui::SeparatorText("Processing Pipeline");
// Input Color Space Selector
bool inputCsChanged = false;
ImGui::Text("Input Color Space:");
ImGui::SameLine();
if (ImGui::BeginCombo("##InputCS", ColorSpaceToString(g_inputColorSpace)))
{
if (ImGui::Selectable(ColorSpaceToString(ColorSpace::LINEAR_SRGB), g_inputColorSpace == ColorSpace::LINEAR_SRGB))
{
if (g_inputColorSpace != ColorSpace::LINEAR_SRGB)
inputCsChanged = true;
g_inputColorSpace = ColorSpace::LINEAR_SRGB;
}
if (ImGui::Selectable(ColorSpaceToString(ColorSpace::SRGB), g_inputColorSpace == ColorSpace::SRGB))
{
if (g_inputColorSpace != ColorSpace::SRGB)
inputCsChanged = true;
g_inputColorSpace = ColorSpace::SRGB;
}
ImGui::EndCombo();
}
if (inputCsChanged)
g_pipeline.MarkDirty();
// --- Output Color Space Selector ---
bool outputCsChanged = false;
ImGui::Text("Output Color Space:");
ImGui::SameLine();
if (ImGui::BeginCombo("##OutputCS", ColorSpaceToString(g_outputColorSpace)))
{
if (ImGui::Selectable(ColorSpaceToString(ColorSpace::LINEAR_SRGB), g_outputColorSpace == ColorSpace::LINEAR_SRGB))
{
if (g_outputColorSpace != ColorSpace::LINEAR_SRGB)
outputCsChanged = true;
g_outputColorSpace = ColorSpace::LINEAR_SRGB;
}
if (ImGui::Selectable(ColorSpaceToString(ColorSpace::SRGB), g_outputColorSpace == ColorSpace::SRGB))
{
if (g_outputColorSpace != ColorSpace::SRGB)
outputCsChanged = true;
g_outputColorSpace = ColorSpace::SRGB;
}
ImGui::EndCombo();
}
if (outputCsChanged)
g_pipeline.MarkDirty(); // <<< Mark dirty
ImGui::Separator();
ImGui::Text("Operation Order:");
// --- Drag-and-Drop Reordering List ---
int move_from = -1, move_to = -1;
bool order_or_enabled_changed = false; // Flag for changes in this section
for (int i = 0; i < g_pipeline.activeOperations.size(); ++i)
{
PipelineOperation &op = g_pipeline.activeOperations[i];
ImGui::PushID(i);
if (ImGui::Checkbox("", &op.enabled))
{ // <<< Check return value
order_or_enabled_changed = true;
}
// ... (Up/Down buttons - set order_or_enabled_changed = true if clicked) ...
ImGui::SameLine();
if (ImGui::ArrowButton("##up", ImGuiDir_Up) && i > 0)
{
move_from = i;
move_to = i - 1;
}
ImGui::SameLine();
if (ImGui::ArrowButton("##down", ImGuiDir_Down) && i < g_pipeline.activeOperations.size() - 1)
{
move_from = i;
move_to = i + 1;
}
ImGui::SameLine();
ImGui::Selectable(op.name.c_str(), false, 0, ImVec2(ImGui::GetContentRegionAvail().x - 60, 0)); // Adjust size if needed
// Drag Drop Source/Target
if (ImGui::BeginDragDropSource(ImGuiDragDropFlags_None))
{ /* ... */
}
if (ImGui::BeginDragDropTarget())
{
if (const ImGuiPayload *payload = ImGui::AcceptDragDropPayload("PIPELINE_OP_DND"))
{
move_from = *(const int *)payload->Data;
move_to = i;
}
ImGui::EndDragDropTarget();
}
ImGui::PopID();
}
bool adjustment_changed = false; // Still useful for general dirty marking
bool is_diffing_this_frame = false; // Track if *any* diff is active
// Helper lambda to handle diff state logic after each slider
auto HandleSliderDiffState = [&](const char *operationName)
{
ImGuiIO &io = ImGui::GetIO();
bool slider_active = ImGui::IsItemActive();
bool alt_held = io.KeyAlt;
if (slider_active)
{
if (alt_held)
{
// Start or continue diffing for THIS operation
g_pipeline.SetDiffActiveOperation(operationName);
is_diffing_this_frame = true; // Mark that a diff is happening
// MarkDirty is called within SetDiffActiveOperation if state changes
}
else
{
// Slider active, but Alt released OR was never pressed
// If we *were* diffing this specific operation, stop it.
if (g_pipeline.IsDiffActiveForOperation(operationName))
{
g_pipeline.SetDiffActiveOperation(nullptr);
// MarkDirty called within SetDiffActiveOperation
}
}
}
else
{
// Slider is NOT active. If we were diffing this specific operation, stop it.
if (g_pipeline.IsDiffActiveForOperation(operationName))
{
g_pipeline.SetDiffActiveOperation(nullptr);
// MarkDirty called within SetDiffActiveOperation
}
}
};
// Process move if detected
if (move_from != -1 && move_to != -1 && move_from != move_to)
{
// ... (Reordering logic) ...
order_or_enabled_changed = true; // <<< Reordering occurred
}
if (order_or_enabled_changed)
{
g_pipeline.MarkDirty(); // <<< Mark dirty if enabled state or order changed
}
if (ImGui::CollapsingHeader("White Balance", ImGuiTreeNodeFlags_DefaultOpen))
{
adjustment_changed |= ImGui::SliderFloat("Temperature", &temperature, 1000.0f, 20000.0f);
HandleSliderDiffState("White Balance"); // Assuming "White Balance" is the operation name
adjustment_changed |= ImGui::SliderFloat("Tint", &tint, -100.0f, 100.0f);
HandleSliderDiffState("White Balance"); // Both sliders control the same operation
}
ImGui::Separator();
if (ImGui::CollapsingHeader("Tone", ImGuiTreeNodeFlags_DefaultOpen))
{
adjustment_changed |= ImGui::SliderFloat("Exposure", &exposure, -5.0f, 5.0f, "%.1f", ImGuiSliderFlags_Logarithmic);
HandleSliderDiffState("Exposure"); // Match operation name
adjustment_changed |= ImGui::SliderFloat("Contrast", &contrast, -5.0f, 5.0f, "%.1f", ImGuiSliderFlags_Logarithmic);
HandleSliderDiffState("Contrast"); // Match operation name
ImGui::Separator();
adjustment_changed |= ImGui::SliderFloat("Highlights", &highlights, -100.0f, 100.0f);
HandleSliderDiffState("Highlights/Shadows"); // Match operation name
adjustment_changed |= ImGui::SliderFloat("Shadows", &shadows, -100.0f, 100.0f);
HandleSliderDiffState("Highlights/Shadows"); // Match operation name
adjustment_changed |= ImGui::SliderFloat("Whites", &whites, -100.0f, 100.0f);
HandleSliderDiffState("Whites/Blacks"); // Match operation name
adjustment_changed |= ImGui::SliderFloat("Blacks", &blacks, -100.0f, 100.0f);
HandleSliderDiffState("Whites/Blacks"); // Match operation name
}
ImGui::Separator();
if (ImGui::CollapsingHeader("Presence", ImGuiTreeNodeFlags_DefaultOpen))
{
adjustment_changed |= ImGui::SliderFloat("Texture", &texture, -100.0f, 100.0f);
HandleSliderDiffState("Texture"); // Match operation name
adjustment_changed |= ImGui::SliderFloat("Clarity", &clarity, -100.0f, 100.0f);
HandleSliderDiffState("Clarity"); // Match operation name
adjustment_changed |= ImGui::SliderFloat("Dehaze", &dehaze, -100.0f, 100.0f);
HandleSliderDiffState("Dehaze"); // Match operation name
ImGui::Separator();
adjustment_changed |= ImGui::SliderFloat("Vibrance", &vibrance, -100.0f, 100.0f);
HandleSliderDiffState("Vibrance"); // Match operation name
adjustment_changed |= ImGui::SliderFloat("Saturation", &saturation, -100.0f, 100.0f);
HandleSliderDiffState("Saturation"); // Match operation name
}
ImGui::Separator();
// If any non-diff adjustment happened, mark dirty
// (SetDiffActiveOperation already marks dirty if the diff state *changes*)
if (adjustment_changed && !is_diffing_this_frame)
{
g_pipeline.MarkDirty();
}
ImGui::SeparatorText("Transform");
bool crop_applied_or_cancelled = false;
if (!g_cropActive)
{
if (ImGui::Button("Crop & Straighten"))
{ // Combine visually for now
g_cropActive = true;
g_cropRectNorm =
ImVec4(0.0f, 0.0f, 1.0f, 1.0f); // Reset crop on activation
g_cropRectNormInitial = g_cropRectNorm; // Store initial state
g_activeCropHandle = CropHandle::NONE;
g_isDraggingCrop = false;
// Update Original aspect ratio if needed
if (g_loadedImage.getHeight() > 0)
{
for (auto &opt : g_aspectRatios)
{
if (strcmp(opt.name, "Original") == 0)
{
opt.ratio = float(g_loadedImage.getWidth()) /
float(g_loadedImage.getHeight());
break;
}
}
}
// If current selection is 'Original', update g_cropAspectRatio
if (g_selectedAspectRatioIndex >= 0 &&
g_selectedAspectRatioIndex < g_aspectRatios.size() &&
strcmp(g_aspectRatios[g_selectedAspectRatioIndex].name,
"Original") == 0)
{
g_cropAspectRatio =
g_aspectRatios[g_selectedAspectRatioIndex].ratio;
}
printf("Crop tool activated.\n");
}
}
else
{
ImGui::Text("Crop Active");
// Aspect Ratio Selector
if (ImGui::BeginCombo(
"Aspect Ratio",
g_aspectRatios[g_selectedAspectRatioIndex].name))
{
for (int i = 0; i < g_aspectRatios.size(); ++i)
{
bool is_selected = (g_selectedAspectRatioIndex == i);
if (ImGui::Selectable(g_aspectRatios[i].name, is_selected))
{
g_selectedAspectRatioIndex = i;
g_cropAspectRatio = g_aspectRatios[i].ratio;
// Optional: Reset crop rectangle slightly or adjust existing one
// to the new ratio if transitioning from freeform? Or just let
// user resize.
printf("Selected aspect ratio: %s (%.2f)\n",
g_aspectRatios[i].name, g_cropAspectRatio);
}
if (is_selected)
ImGui::SetItemDefaultFocus();
}
ImGui::EndCombo();
}
// Apply/Cancel Buttons
if (ImGui::Button("Apply Crop"))
{
printf("Apply Crop button clicked.\n");
// <<< --- CALL FUNCTION TO APPLY CROP --- >>>
if (ApplyCropToImage(g_loadedImage, g_cropRectNorm))
{
printf("Crop applied successfully. Reloading texture and resetting "
"pipeline.\n");
// Reload texture with cropped data
if (!loadImageTexture(g_loadedImage))
{
fprintf(stderr, "Error reloading texture after crop!\n");
g_imageIsLoaded = false; // Mark as not usable
}
// Reset pipeline FBOs/Textures due to size change
g_pipeline.ResetResources();
crop_applied_or_cancelled = true;
}
else
{
fprintf(stderr, "Failed to apply crop to image data.\n");
// Optionally show error to user
}
// Reset state after applying
g_cropActive = false;
g_cropRectNorm = ImVec4(0.0f, 0.0f, 1.0f, 1.0f);
g_activeCropHandle = CropHandle::NONE;
g_isDraggingCrop = false;
}
ImGui::SameLine();
if (ImGui::Button("Cancel Crop"))
{
printf("Crop cancelled.\n");
g_cropActive = false;
crop_applied_or_cancelled = true;
g_cropRectNorm =
ImVec4(0.0f, 0.0f, 1.0f, 1.0f); // Reset to full image
g_activeCropHandle = CropHandle::NONE;
g_isDraggingCrop = false;
}
}
ImGui::End(); // End Edit Image
ImGui::End(); // End MainDockspaceWindow
}
else
{
// Option 2: Simple full-screen window (no docking)
ImGuiViewport *viewport = ImGui::GetMainViewport();
ImGui::SetNextWindowPos(viewport->WorkPos);
ImGui::SetNextWindowSize(viewport->WorkSize);
ImGuiWindowFlags window_flags =
ImGuiWindowFlags_NoDecoration | ImGuiWindowFlags_NoMove |
ImGuiWindowFlags_NoResize | ImGuiWindowFlags_NoSavedSettings |
ImGuiWindowFlags_NoBringToFrontOnFocus;
ImGui::Begin("FullImageViewer", nullptr, window_flags);
ImGui::Text("Image Viewer");
ImGuiTexInspect::BeginInspectorPanel(
"Image Inspector", g_loadedImage.m_textureId,
ImVec2(g_loadedImage.m_width, g_loadedImage.m_height),
ImGuiTexInspect::InspectorFlags_NoTooltip);
ImGuiTexInspect::EndInspectorPanel();
ImGui::End();
}
// Rendering
ImGui::Render();
glViewport(0, 0, (int)io.DisplaySize.x, (int)io.DisplaySize.y);
glClearColor(clear_color.x * clear_color.w, clear_color.y * clear_color.w,
clear_color.z * clear_color.w, clear_color.w);
glClear(GL_COLOR_BUFFER_BIT);
ImGui_ImplOpenGL3_RenderDrawData(ImGui::GetDrawData());
// Update and Render additional Platform Windows
// (Platform functions may change the current OpenGL context, so we
// save/restore it to make it easier to paste this code elsewhere.
// For this specific demo app we could also call SDL_GL_MakeCurrent(window,
// gl_context) directly)
if (io.ConfigFlags & ImGuiConfigFlags_ViewportsEnable)
{
SDL_Window *backup_current_window = SDL_GL_GetCurrentWindow();
SDL_GLContext backup_current_context = SDL_GL_GetCurrentContext();
ImGui::UpdatePlatformWindows();
ImGui::RenderPlatformWindowsDefault();
SDL_GL_MakeCurrent(backup_current_window, backup_current_context);
}
SDL_GL_SwapWindow(window);
}
#ifdef __EMSCRIPTEN__
EMSCRIPTEN_MAINLOOP_END;
#endif
// Cleanup
// --- Cleanup ---
// Destroy operations which will delete shader programs
g_allOperations
.clear(); // Deletes PipelineOperation objects and their shaders
g_pipeline.activeOperations
.clear(); // Clear the list in pipeline (doesn't own shaders)
// Pipeline destructor handles FBOs/VAO etc.
// Delete the originally loaded texture
if (g_loadedImage.m_textureId != 0)
{
glDeleteTextures(1, &g_loadedImage.m_textureId);
g_loadedImage.m_textureId = 0;
}
if (g_histogramResourcesInitialized)
{
if (g_histogramSSBO)
glDeleteBuffers(1, &g_histogramSSBO);
if (g_histogramComputeShader)
glDeleteProgram(g_histogramComputeShader);
printf("Cleaned up histogram resources.\n");
}
ImGuiTexInspect::Shutdown();
ImGui_ImplOpenGL3_Shutdown();
ImGui_ImplSDL2_Shutdown();
ImGui::DestroyContext();
SDL_GL_DeleteContext(gl_context);
SDL_DestroyWindow(window);
SDL_Quit();
return 0;
}