ale/main.py

255 lines
9.9 KiB
Python
Raw Normal View History

2022-10-20 23:43:07 -04:00
import argparse
import structlog
from functools import partial
from pathlib import Path
import sys
import hashlib
import random
import multiprocessing
import concurrent.futures
import time
2022-10-20 23:43:07 -04:00
import numpy as np
2023-02-18 22:26:48 -05:00
from src.utils.prereq import check_ffmpeg, install_ffmpeg
check_ffmpeg()
2022-10-20 23:43:07 -04:00
from src.mediautils.audio import extract_audio_from_video
2023-02-16 19:34:13 -05:00
from src.mediautils.video import render_moments, filter_moments
2022-10-20 23:43:07 -04:00
from src.editors.amplitude.editor import AmplitudeEditor
from src.editors.sentiment.editor import SentimentEditor
from src.math.cost import quadratic_loss
2022-10-20 23:43:07 -04:00
from src.math.distribution import create_distribution
log = structlog.get_logger()
EDITORS = {
'amplitude': AmplitudeEditor,
'sentiment': SentimentEditor
}
ERROR_FUNCS = {
'quadratic': quadratic_loss
}
2022-10-20 23:43:07 -04:00
def main(args):
# Check video existance
input_file = args.file
in_vid_path = Path(input_file)
if not in_vid_path.is_file():
log.error("the specified input path does not exist", path=input_file)
sys.exit(-1)
log.info("preparing video", input_video=input_file)
2023-02-18 20:34:10 -05:00
intro_file = args.introvidpath
if intro_file is not None:
intro_vid_path = Path(intro_file)
if not in_vid_path.is_file():
log.error("the specified input path does not exist for the intro", path=intro_file)
sys.exit(-1)
log.info("found intro", input_video=intro_file)
outro_file = args.outrovidpath
if outro_file is not None:
outro_vid_path = Path(outro_file)
if not outro_vid_path.is_file():
log.error("the specified input path does not exist for the outro", path=outro_file)
sys.exit(-1)
log.info("found outro", input_video=outro_file)
2022-10-20 23:43:07 -04:00
# Hash the video, we use this to see if we have processed this video before
# and as a simple way to generate temp file names
sha1 = hashlib.sha1()
BUF_SIZE = 1655360
with open(in_vid_path, 'rb') as f:
while True:
data = f.read(BUF_SIZE)
if not data:
break
sha1.update(data)
temp_file_name = sha1.hexdigest()
log.info("hash computed", hash=temp_file_name)
temp_file_name = f"ale-{temp_file_name}"
# Prepare the input video
audio_path, audio_cached = extract_audio_from_video(str(in_vid_path.resolve()), temp_file_name)
if audio_cached:
log.info("using cached audio file", cache_path=audio_path)
else:
log.info("extracted audio", cache_path=audio_path)
2023-02-16 19:34:13 -05:00
params = vars(args)
params["temp_file_name"] = temp_file_name
2022-10-20 23:43:07 -04:00
# Initalize Editor
log.info("initializing editor", editor=args.editor)
2023-02-16 19:34:13 -05:00
editor = EDITORS[args.editor](str(in_vid_path.resolve()), audio_path, params)
2022-10-20 23:43:07 -04:00
log.info("initialized editor", editor=args.editor)
costfunc = ERROR_FUNCS[args.cost]
desired = args.duration
2022-10-20 23:43:07 -04:00
# Generate center of large window and small window size
large_window_center = random.uniform(30, 50)
small_window_center = random.uniform(5, 15)
# The spread multiplier, or epsilon, slowly decays as we approach the center of the gradient
spread_multiplier = random.uniform(0.15, 0.18)
# The decay rate, or how quickly our spread multiplier decreases as we approach the center of the gradient
2023-02-16 19:34:13 -05:00
spread_decay = random.uniform(0.000001, 0.0001)
2022-10-20 23:43:07 -04:00
parallelism = args.parallelism
# The main loop of the program starts here
# we first create distributions
# use workers to simultanously create many possible edits
# find the best edit of the lot -> this is determined by lowest "cost"
# if the best fits within our desitred time range, output, otherwise
# reset the distributions using the best as the new center, then repeat
# Create distribution of large and small
complete = False
iterations = 0
while not complete:
large_distribution = create_distribution(large_window_center, spread_multiplier, parallelism)
np.random.shuffle(large_distribution)
small_distribution = create_distribution(small_window_center, spread_multiplier, parallelism)
np.random.shuffle(small_distribution)
# Fire off workers to generate edits
moment_results = []
with concurrent.futures.ThreadPoolExecutor() as executor:
futures = []
pairs = list(zip(large_distribution, small_distribution))
for pair in pairs:
futures.append(
executor.submit(
editor.edit,
2023-02-16 19:34:13 -05:00
pair[0] if pair[0] > pair[1] else pair[1],
pair[1] if pair[0] > pair[1] else pair[0],
vars(args)
)
2022-10-20 23:43:07 -04:00
)
for future in concurrent.futures.as_completed(futures):
try:
2023-02-16 19:34:13 -05:00
moment_results.append(list(future.result()))
except Exception:
log.exception("error during editing")
sys.exit(-2)
moment_results
costs = []
durations = []
for result in moment_results:
total_duration = 0
2023-02-16 19:34:13 -05:00
result[0] = filter_moments(result[0], args.mindur, args.maxdur)
for moment in result[0]:
total_duration = total_duration + moment.get_duration()
costs.append(costfunc(desired, total_duration))
durations.append(total_duration)
index_min = min(range(len(costs)), key=costs.__getitem__)
large_window_center = moment_results[index_min][1]
small_window_center = moment_results[index_min][2]
log.info("batch complete", best_large=large_window_center, best_small=small_window_center, duration=durations[index_min])
if durations[index_min] > desired * 0.95 and desired * 1.05 > durations[index_min]:
log.info("found edit within target duration", target=desired, duration=durations[index_min])
out_path = Path(args.destination)
log.info("rendering...")
start = time.time()
2023-02-18 20:34:10 -05:00
render_moments(moment_results[index_min][0], str(in_vid_path.resolve()), str(out_path.resolve()), intro_path=intro_file, parallelism=args.parallelism)
log.info("render complete", duration=time.time() - start, output=str(out_path.resolve()))
sys.exit(0)
iterations = iterations + parallelism
if iterations > 50000:
log.error("could not find a viable edit in the target duration, try other params", target=desired)
sys.exit(-4)
spread_multiplier = spread_multiplier - spread_decay
if spread_multiplier < 0:
log.warn("spread reached 0, resetting")
large_window_center = random.uniform(30, 50)
small_window_center = random.uniform(5, 15)
spread_multiplier = random.uniform(0.15, 0.18)
spread_decay = random.uniform(0.0001, 0.001)
2022-10-20 23:43:07 -04:00
if __name__ == "__main__":
parser = argparse.ArgumentParser(
prog="ALE", description="ALE: Automatic Linear Editor.",
formatter_class=partial(argparse.HelpFormatter, width=100)
)
parser.add_argument('file', help='Path to the video file to edit')
parser.add_argument('duration', help='Target length of the edit, in seconds', type=int)
parser.add_argument('destination', help='Edited video save location')
subparsers = parser.add_subparsers(dest='editor', help='The editing algorithm to use')
parser_audio_amp = subparsers.add_parser('amplitude', help='The amplitude editor uses audio amplitude moving averages to find swings from relatively quiet moments to loud moments. This is useful in videos where long moments of quiet are interspersed with loud action filled moments.')
parser_audio_amp.add_argument(
"--factor",
default=16000,
help="Subsampling factor",
dest="factor",
type=int,
)
2022-10-21 20:47:39 -04:00
parser_sentiment = subparsers.add_parser('sentiment', help='The sentiment editor transcribes the speech in a video and runs sentiment analysis on the resulting text. Using moving averages, large swings in sentiment can be correlated to controversial or exciting moments. A GPU with CUDA is recommended for fast results.')
parser_sentiment.add_argument(
"--model",
default="base",
help="The size of the sentiment analysis model being used. Larger models increase computation time.",
dest="model_size",
choices=["base", "tiny", "small", "medium", "large"],
)
2022-10-20 23:43:07 -04:00
parser.add_argument("-p", "--parallelism", dest="parallelism", type=int, default=multiprocessing.cpu_count() - 2, help="The number of cores to use, defaults to N - 2 cores.")
parser.add_argument("--cost-function", dest="cost", choices=ERROR_FUNCS.keys(), default='quadratic')
2022-10-20 23:43:07 -04:00
parser.add_argument(
2023-02-18 20:34:10 -05:00
"--min-duration",
2022-10-20 23:43:07 -04:00
default=8,
help="Minimum clip duration",
dest="mindur",
type=int,
)
parser.add_argument(
2023-02-18 20:34:10 -05:00
"--max-duration",
2022-10-20 23:43:07 -04:00
default=15,
help="Maximum clip duration",
dest="maxdur",
type=int,
)
2023-02-18 20:34:10 -05:00
parser.add_argument(
"--intro-video",
default=None,
help="Path to a video file to use as an intro",
dest="introvidpath",
type=str,
)
parser.add_argument(
"--outro-video",
default=None,
help="Path to a video file to use as an outro",
dest="outrovidpath",
type=str,
)
parser.add_argument(
"--title-slide-text",
default=None,
help="Text to show during a title slide. The title slide is played after any provided intro. If there is no intro, the title slide is the intro",
dest="outrovidpath",
type=str,
)
parser.add_argument(
"--title-slide-duration",
default=5,
help="Time, in seconds, to show a title slide for",
dest="outrovidpath",
type=str,
)
2022-10-20 23:43:07 -04:00
args = parser.parse_args()
try:
main(args)
except Exception:
log.exception("uncaught error!")
sys.exit(-2)
sys.exit(0)