basic iterations working, need to do duration mapping
This commit is contained in:
parent
6e69bf6b67
commit
80d8845eda
108
main.py
108
main.py
@ -7,12 +7,15 @@ import hashlib
|
||||
import random
|
||||
import multiprocessing
|
||||
import concurrent.futures
|
||||
import time
|
||||
|
||||
import numpy as np
|
||||
|
||||
from src.mediautils.audio import extract_audio_from_video
|
||||
from src.mediautils.video import render_moments
|
||||
from src.editors.amplitude.editor import AmplitudeEditor
|
||||
from src.editors.sentiment.editor import SentimentEditor
|
||||
from src.math.cost import quadratic_loss
|
||||
from src.math.distribution import create_distribution
|
||||
|
||||
log = structlog.get_logger()
|
||||
@ -22,6 +25,10 @@ EDITORS = {
|
||||
'sentiment': SentimentEditor
|
||||
}
|
||||
|
||||
ERROR_FUNCS = {
|
||||
'quadratic': quadratic_loss
|
||||
}
|
||||
|
||||
def main(args):
|
||||
# Check video existance
|
||||
input_file = args.file
|
||||
@ -56,6 +63,8 @@ def main(args):
|
||||
log.info("initializing editor", editor=args.editor)
|
||||
editor = EDITORS[args.editor](str(in_vid_path.resolve()), audio_path, vars(args))
|
||||
log.info("initialized editor", editor=args.editor)
|
||||
costfunc = ERROR_FUNCS[args.cost]
|
||||
desired = args.duration
|
||||
|
||||
# Generate center of large window and small window size
|
||||
large_window_center = random.uniform(30, 50)
|
||||
@ -67,32 +76,83 @@ def main(args):
|
||||
# The decay rate, or how quickly our spread multiplier decreases as we approach the center of the gradient
|
||||
spread_decay = random.uniform(0.0001, 0.001)
|
||||
|
||||
log.info("creating distributions", large_start=large_window_center, small_start=small_window_center, spread=spread_multiplier, decay=spread_decay)
|
||||
# Create distribution of large and small
|
||||
parallelism = args.parallelism
|
||||
large_distribution = create_distribution(large_window_center, spread_multiplier, parallelism)
|
||||
np.random.shuffle(large_distribution)
|
||||
small_distribution = create_distribution(small_window_center, spread_multiplier, parallelism)
|
||||
np.random.shuffle(small_distribution)
|
||||
|
||||
with concurrent.futures.ThreadPoolExecutor() as executor:
|
||||
futures = []
|
||||
pairs = list(zip(large_distribution, small_distribution))
|
||||
for pair in pairs:
|
||||
futures.append(
|
||||
executor.submit(
|
||||
editor.edit,
|
||||
pair[0],
|
||||
pair[1],
|
||||
vars(args)
|
||||
# The main loop of the program starts here
|
||||
# we first create distributions
|
||||
# use workers to simultanously create many possible edits
|
||||
# find the best edit of the lot -> this is determined by lowest "cost"
|
||||
# if the best fits within our desitred time range, output, otherwise
|
||||
# reset the distributions using the best as the new center, then repeat
|
||||
# Create distribution of large and small
|
||||
|
||||
complete = False
|
||||
iterations = 0
|
||||
while not complete:
|
||||
log.info("creating distributions", large_start=large_window_center, small_start=small_window_center, spread=spread_multiplier, decay=spread_decay)
|
||||
large_distribution = create_distribution(large_window_center, spread_multiplier, parallelism)
|
||||
np.random.shuffle(large_distribution)
|
||||
small_distribution = create_distribution(small_window_center, spread_multiplier, parallelism)
|
||||
np.random.shuffle(small_distribution)
|
||||
|
||||
# Fire off workers to generate edits
|
||||
moment_results = []
|
||||
with concurrent.futures.ThreadPoolExecutor() as executor:
|
||||
futures = []
|
||||
pairs = list(zip(large_distribution, small_distribution))
|
||||
for pair in pairs:
|
||||
futures.append(
|
||||
executor.submit(
|
||||
editor.edit,
|
||||
pair[0],
|
||||
pair[1],
|
||||
vars(args)
|
||||
)
|
||||
)
|
||||
)
|
||||
for future in concurrent.futures.as_completed(futures):
|
||||
value = future.result()
|
||||
log.info("got val", val=value)
|
||||
for future in concurrent.futures.as_completed(futures):
|
||||
try:
|
||||
moment_results.append(future.result())
|
||||
except Exception:
|
||||
log.exception("error during editing")
|
||||
sys.exit(-2)
|
||||
moment_results
|
||||
costs = []
|
||||
durations = []
|
||||
for result in moment_results:
|
||||
total_duration = 0
|
||||
for moment in result[0]:
|
||||
total_duration = total_duration + moment.get_duration()
|
||||
costs.append(costfunc(desired, total_duration))
|
||||
durations.append(total_duration)
|
||||
index_min = min(range(len(costs)), key=costs.__getitem__)
|
||||
large_window_center = moment_results[index_min][1]
|
||||
small_window_center = moment_results[index_min][2]
|
||||
log.info("batch complete", best_large=large_window_center, best_small=small_window_center, duration=durations[index_min])
|
||||
if durations[index_min] > desired * 0.95 and desired * 1.05 > durations[index_min]:
|
||||
log.info("found edit within target duration", target=desired, duration=durations[index_min])
|
||||
out_path = Path(args.destination)
|
||||
log.info("rendering...")
|
||||
start = time.time()
|
||||
render_moments(moment_results[index_min][0], str(in_vid_path.resolve()), str(out_path.resolve()))
|
||||
log.info("render complete", duration=time.time() - start, output=str(out_path.resolve()))
|
||||
sys.exit(0)
|
||||
iterations = iterations + parallelism
|
||||
if iterations > 50000:
|
||||
log.error("could not find a viable edit in the target duration, try other params", target=desired)
|
||||
sys.exit(-4)
|
||||
spread_multiplier = spread_multiplier - spread_decay
|
||||
if spread_multiplier < 0:
|
||||
log.warn("spread reached 0, resetting")
|
||||
large_window_center = random.uniform(30, 50)
|
||||
small_window_center = random.uniform(5, 15)
|
||||
spread_multiplier = random.uniform(0.15, 0.18)
|
||||
spread_decay = random.uniform(0.0001, 0.001)
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
desired = args.duration
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
@ -115,13 +175,12 @@ if __name__ == "__main__":
|
||||
type=int,
|
||||
)
|
||||
|
||||
parser_audio_amp = subparsers.add_parser('sentiment', help='The sentiment editor transcribes the speech in a video and runs sentiment analysis on the resulting text. Using moving averages, large swings in sentiment can be correlated to controversial or exciting moments.')
|
||||
parser_audio_amp = subparsers.add_parser('sentiment', help='The sentiment editor transcribes the speech in a video and runs sentiment analysis on the resulting text. Using moving averages, large swings in sentiment can be correlated to controversial or exciting moments. A GPU with CUDA is recommended for fast results.')
|
||||
|
||||
parser.add_argument("-d", "--dryrun", dest="drun", action="store_true")
|
||||
parser.add_argument("-p", "--parallelism", dest="parallelism", type=int, default=multiprocessing.cpu_count() - 2, help="The number of cores to use, defaults to N - 2 cores.")
|
||||
parser.add_argument("--cost-function", dest="cost", choices=ERROR_FUNCS.keys(), default='quadratic')
|
||||
|
||||
parser.add_argument(
|
||||
"-i",
|
||||
"--minduration",
|
||||
default=8,
|
||||
help="Minimum clip duration",
|
||||
@ -129,7 +188,6 @@ if __name__ == "__main__":
|
||||
type=int,
|
||||
)
|
||||
parser.add_argument(
|
||||
"-m",
|
||||
"--maxduration",
|
||||
default=15,
|
||||
help="Maximum clip duration",
|
||||
|
@ -25,5 +25,5 @@ class AmplitudeEditor:
|
||||
long_ma = np_moving_average(self.squared_subsample, large_window * window_factor)
|
||||
short_ma = np_moving_average(self.squared_subsample, small_window * window_factor)
|
||||
highlights = find_moving_average_highlights(short_ma, long_ma, self.factor / self.bitrate)
|
||||
return highlights
|
||||
return highlights, large_window, small_window
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user