refactor editors to move core logic into the editors themselves
This commit is contained in:
parent
8787caed83
commit
174a828988
145
main.py
145
main.py
@ -1,26 +1,22 @@
|
||||
import argparse
|
||||
import concurrent.futures
|
||||
import hashlib
|
||||
import multiprocessing
|
||||
import random
|
||||
import sys
|
||||
import time
|
||||
from functools import partial
|
||||
from pathlib import Path
|
||||
|
||||
import numpy as np
|
||||
import structlog
|
||||
|
||||
from src.utils.prereq import check_ffmpeg, install_ffmpeg
|
||||
from src.utils.prereq import check_ffmpeg
|
||||
|
||||
check_ffmpeg()
|
||||
|
||||
from src.editors.amplitude.editor import AmplitudeEditor
|
||||
from src.editors.sentiment.editor import SentimentEditor
|
||||
from src.math.cost import quadratic_loss
|
||||
from src.math.distribution import create_distribution
|
||||
from src.mediautils.audio import extract_audio_from_video
|
||||
from src.mediautils.video import filter_moments, render_moments
|
||||
from src.mediautils.video import render_moments
|
||||
|
||||
log = structlog.get_logger()
|
||||
|
||||
@ -90,116 +86,37 @@ def main(args):
|
||||
costfunc = ERROR_FUNCS[args.cost]
|
||||
desired = args.duration
|
||||
|
||||
# Generate center of large window and small window size
|
||||
large_window_center = random.uniform(30, 50)
|
||||
small_window_center = random.uniform(5, 15)
|
||||
result = []
|
||||
try:
|
||||
result = editor.full_edit(costfunc, desired, vars(args))
|
||||
except Exception as e:
|
||||
log.fatal("there was an error during editing the video", error=e)
|
||||
sys.exit(-1)
|
||||
|
||||
# The spread multiplier, or epsilon, slowly decays as we approach the center of the gradient
|
||||
spread_multiplier = random.uniform(0.15, 0.18)
|
||||
if len(result) == 0:
|
||||
log.fatal("no viable edit was found for the provided parameters, please try again with different values")
|
||||
sys.exit(-2)
|
||||
|
||||
# The decay rate, or how quickly our spread multiplier decreases as we approach the center of the gradient
|
||||
spread_decay = random.uniform(0.000001, 0.0001)
|
||||
|
||||
parallelism = args.parallelism
|
||||
|
||||
# The main loop of the program starts here
|
||||
# we first create distributions
|
||||
# use workers to simultanously create many possible edits
|
||||
# find the best edit of the lot -> this is determined by lowest "cost"
|
||||
# if the best fits within our desitred time range, output, otherwise
|
||||
# reset the distributions using the best as the new center, then repeat
|
||||
# Create distribution of large and small
|
||||
|
||||
complete = False
|
||||
iterations = 0
|
||||
while not complete:
|
||||
large_distribution = create_distribution(
|
||||
large_window_center, spread_multiplier, parallelism
|
||||
)
|
||||
np.random.shuffle(large_distribution)
|
||||
small_distribution = create_distribution(
|
||||
small_window_center, spread_multiplier, parallelism
|
||||
)
|
||||
np.random.shuffle(small_distribution)
|
||||
|
||||
# Fire off workers to generate edits
|
||||
moment_results = []
|
||||
with concurrent.futures.ThreadPoolExecutor() as executor:
|
||||
futures = []
|
||||
pairs = list(zip(large_distribution, small_distribution))
|
||||
for pair in pairs:
|
||||
futures.append(
|
||||
executor.submit(
|
||||
editor.edit,
|
||||
pair[0] if pair[0] > pair[1] else pair[1],
|
||||
pair[1] if pair[0] > pair[1] else pair[0],
|
||||
vars(args),
|
||||
)
|
||||
)
|
||||
for future in concurrent.futures.as_completed(futures):
|
||||
try:
|
||||
moment_results.append(list(future.result()))
|
||||
except Exception:
|
||||
log.exception("error during editing")
|
||||
sys.exit(-2)
|
||||
moment_results
|
||||
costs = []
|
||||
durations = []
|
||||
for result in moment_results:
|
||||
total_duration = 0
|
||||
result[0] = filter_moments(result[0], args.mindur, args.maxdur)
|
||||
for moment in result[0]:
|
||||
total_duration = total_duration + moment.get_duration()
|
||||
costs.append(costfunc(desired, total_duration))
|
||||
durations.append(total_duration)
|
||||
index_min = min(range(len(costs)), key=costs.__getitem__)
|
||||
large_window_center = moment_results[index_min][1]
|
||||
small_window_center = moment_results[index_min][2]
|
||||
log.info(
|
||||
"batch complete",
|
||||
best_large=large_window_center,
|
||||
best_small=small_window_center,
|
||||
duration=durations[index_min],
|
||||
)
|
||||
if (
|
||||
durations[index_min] > desired * 0.95
|
||||
and desired * 1.05 > durations[index_min]
|
||||
):
|
||||
log.info(
|
||||
"found edit within target duration",
|
||||
target=desired,
|
||||
duration=durations[index_min],
|
||||
)
|
||||
out_path = Path(args.destination)
|
||||
log.info("rendering...")
|
||||
start = time.time()
|
||||
render_moments(
|
||||
moment_results[index_min][0],
|
||||
str(in_vid_path.resolve()),
|
||||
str(out_path.resolve()),
|
||||
intro_path=intro_file,
|
||||
parallelism=args.parallelism,
|
||||
)
|
||||
log.info(
|
||||
"render complete",
|
||||
duration=time.time() - start,
|
||||
output=str(out_path.resolve()),
|
||||
)
|
||||
sys.exit(0)
|
||||
iterations = iterations + parallelism
|
||||
if iterations > 50000:
|
||||
log.error(
|
||||
"could not find a viable edit in the target duration, try other params",
|
||||
target=desired,
|
||||
)
|
||||
sys.exit(-4)
|
||||
spread_multiplier = spread_multiplier - spread_decay
|
||||
if spread_multiplier < 0:
|
||||
log.warn("spread reached 0, resetting")
|
||||
large_window_center = random.uniform(30, 50)
|
||||
small_window_center = random.uniform(5, 15)
|
||||
spread_multiplier = random.uniform(0.15, 0.18)
|
||||
spread_decay = random.uniform(0.0001, 0.001)
|
||||
log.info(
|
||||
"found edit within target duration",
|
||||
target=desired,
|
||||
)
|
||||
out_path = Path(args.destination)
|
||||
log.info("rendering...")
|
||||
start = time.time()
|
||||
render_moments(
|
||||
result,
|
||||
str(in_vid_path.resolve()),
|
||||
str(out_path.resolve()),
|
||||
intro_path=intro_file,
|
||||
parallelism=args.parallelism,
|
||||
)
|
||||
log.info(
|
||||
"render complete",
|
||||
duration=time.time() - start,
|
||||
output=str(out_path.resolve()),
|
||||
)
|
||||
sys.exit(0)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
@ -1,9 +1,13 @@
|
||||
import numpy as np
|
||||
import structlog
|
||||
import random
|
||||
import concurrent.futures
|
||||
|
||||
from ...math.average import np_moving_average
|
||||
from ...math.distribution import create_distribution
|
||||
from ...mediautils.audio import process_audio, resample
|
||||
from ..common import find_moving_average_highlights
|
||||
from ...mediautils.video import filter_moments
|
||||
|
||||
|
||||
class AmplitudeEditor:
|
||||
@ -33,3 +37,100 @@ class AmplitudeEditor:
|
||||
short_ma, long_ma, self.factor / self.bitrate
|
||||
)
|
||||
return highlights, large_window, small_window
|
||||
|
||||
def full_edit(self, costfunc, desired_time, params):
|
||||
desired = desired_time
|
||||
|
||||
# Generate center of large window and small window size
|
||||
large_window_center = random.uniform(30, 50)
|
||||
small_window_center = random.uniform(5, 15)
|
||||
|
||||
# The spread multiplier, or epsilon, slowly decays as we approach the center of the gradient
|
||||
spread_multiplier = random.uniform(0.15, 0.18)
|
||||
|
||||
# The decay rate, or how quickly our spread multiplier decreases as we approach the center of the gradient
|
||||
spread_decay = random.uniform(0.000001, 0.0001)
|
||||
|
||||
parallelism = params['parallelism']
|
||||
|
||||
# The main loop of the program starts here
|
||||
# we first create distributions
|
||||
# use workers to simultanously create many possible edits
|
||||
# find the best edit of the lot -> this is determined by lowest "cost"
|
||||
# if the best fits within our desitred time range, output, otherwise
|
||||
# reset the distributions using the best as the new center, then repeat
|
||||
# Create distribution of large and small
|
||||
|
||||
complete = False
|
||||
iterations = 0
|
||||
while not complete:
|
||||
large_distribution = create_distribution(
|
||||
large_window_center, spread_multiplier, parallelism
|
||||
)
|
||||
np.random.shuffle(large_distribution)
|
||||
small_distribution = create_distribution(
|
||||
small_window_center, spread_multiplier, parallelism
|
||||
)
|
||||
np.random.shuffle(small_distribution)
|
||||
|
||||
# Fire off workers to generate edits
|
||||
moment_results = []
|
||||
with concurrent.futures.ThreadPoolExecutor() as executor:
|
||||
futures = []
|
||||
pairs = list(zip(large_distribution, small_distribution))
|
||||
for pair in pairs:
|
||||
futures.append(
|
||||
executor.submit(
|
||||
self.edit,
|
||||
pair[0] if pair[0] > pair[1] else pair[1],
|
||||
pair[1] if pair[0] > pair[1] else pair[0],
|
||||
vars(params),
|
||||
)
|
||||
)
|
||||
failed = None
|
||||
for future in concurrent.futures.as_completed(futures):
|
||||
try:
|
||||
moment_results.append(list(future.result()))
|
||||
except Exception as e:
|
||||
self.logger.exception("error during editing", error=e)
|
||||
failed = e
|
||||
if failed is not None:
|
||||
raise failed
|
||||
costs = []
|
||||
durations = []
|
||||
for result in moment_results:
|
||||
total_duration = 0
|
||||
result[0] = filter_moments(result[0], params['mindur'], params['maxdur'])
|
||||
for moment in result[0]:
|
||||
total_duration = total_duration + moment.get_duration()
|
||||
costs.append(costfunc(desired, total_duration))
|
||||
durations.append(total_duration)
|
||||
index_min = min(range(len(costs)), key=costs.__getitem__)
|
||||
large_window_center = moment_results[index_min][1]
|
||||
small_window_center = moment_results[index_min][2]
|
||||
self.logger.info(
|
||||
"batch complete",
|
||||
best_large=large_window_center,
|
||||
best_small=small_window_center,
|
||||
duration=durations[index_min],
|
||||
)
|
||||
if (
|
||||
durations[index_min] > desired * 0.95
|
||||
and desired * 1.05 > durations[index_min]
|
||||
):
|
||||
return moment_results[index_min][0]
|
||||
|
||||
iterations = iterations + parallelism
|
||||
if iterations > 50000:
|
||||
self.logger.warn(
|
||||
"could not find a viable edit in the target duration, try other params",
|
||||
target=desired,
|
||||
)
|
||||
return []
|
||||
spread_multiplier = spread_multiplier - spread_decay
|
||||
if spread_multiplier < 0:
|
||||
self.logger.warn("spread reached 0, resetting")
|
||||
large_window_center = random.uniform(30, 50)
|
||||
small_window_center = random.uniform(5, 15)
|
||||
spread_multiplier = random.uniform(0.15, 0.18)
|
||||
spread_decay = random.uniform(0.0001, 0.001)
|
||||
|
@ -2,6 +2,9 @@ import json
|
||||
import tempfile
|
||||
from dataclasses import dataclass
|
||||
from pathlib import Path
|
||||
import random
|
||||
import concurrent.futures
|
||||
from ...math.distribution import create_distribution
|
||||
|
||||
import numpy as np
|
||||
import structlog
|
||||
@ -11,6 +14,7 @@ from flair.models import TextClassifier
|
||||
|
||||
from ...math.average import np_moving_average
|
||||
from ..common import find_moving_average_highlights
|
||||
from ...mediautils.video import filter_moments
|
||||
|
||||
|
||||
@dataclass
|
||||
@ -69,3 +73,100 @@ class SentimentEditor:
|
||||
short_ma, long_ma, 1.0 / window_factor
|
||||
)
|
||||
return highlights, large_window, small_window
|
||||
|
||||
def full_edit(self, costfunc, desired_time, params):
|
||||
desired = desired_time
|
||||
|
||||
# Generate center of large window and small window size
|
||||
large_window_center = random.uniform(30, 50)
|
||||
small_window_center = random.uniform(5, 15)
|
||||
|
||||
# The spread multiplier, or epsilon, slowly decays as we approach the center of the gradient
|
||||
spread_multiplier = random.uniform(0.15, 0.18)
|
||||
|
||||
# The decay rate, or how quickly our spread multiplier decreases as we approach the center of the gradient
|
||||
spread_decay = random.uniform(0.000001, 0.0001)
|
||||
|
||||
parallelism = params['parallelism']
|
||||
|
||||
# The main loop of the program starts here
|
||||
# we first create distributions
|
||||
# use workers to simultanously create many possible edits
|
||||
# find the best edit of the lot -> this is determined by lowest "cost"
|
||||
# if the best fits within our desitred time range, output, otherwise
|
||||
# reset the distributions using the best as the new center, then repeat
|
||||
# Create distribution of large and small
|
||||
|
||||
complete = False
|
||||
iterations = 0
|
||||
while not complete:
|
||||
large_distribution = create_distribution(
|
||||
large_window_center, spread_multiplier, parallelism
|
||||
)
|
||||
np.random.shuffle(large_distribution)
|
||||
small_distribution = create_distribution(
|
||||
small_window_center, spread_multiplier, parallelism
|
||||
)
|
||||
np.random.shuffle(small_distribution)
|
||||
|
||||
# Fire off workers to generate edits
|
||||
moment_results = []
|
||||
with concurrent.futures.ThreadPoolExecutor() as executor:
|
||||
futures = []
|
||||
pairs = list(zip(large_distribution, small_distribution))
|
||||
for pair in pairs:
|
||||
futures.append(
|
||||
executor.submit(
|
||||
self.edit,
|
||||
pair[0] if pair[0] > pair[1] else pair[1],
|
||||
pair[1] if pair[0] > pair[1] else pair[0],
|
||||
params,
|
||||
)
|
||||
)
|
||||
failed = None
|
||||
for future in concurrent.futures.as_completed(futures):
|
||||
try:
|
||||
moment_results.append(list(future.result()))
|
||||
except Exception as e:
|
||||
self.logger.exception("error during editing", error=e)
|
||||
failed = e
|
||||
if failed is not None:
|
||||
raise failed
|
||||
costs = []
|
||||
durations = []
|
||||
for result in moment_results:
|
||||
total_duration = 0
|
||||
result[0] = filter_moments(result[0], params['mindur'], params['maxdur'])
|
||||
for moment in result[0]:
|
||||
total_duration = total_duration + moment.get_duration()
|
||||
costs.append(costfunc(desired, total_duration))
|
||||
durations.append(total_duration)
|
||||
index_min = min(range(len(costs)), key=costs.__getitem__)
|
||||
large_window_center = moment_results[index_min][1]
|
||||
small_window_center = moment_results[index_min][2]
|
||||
self.logger.info(
|
||||
"batch complete",
|
||||
best_large=large_window_center,
|
||||
best_small=small_window_center,
|
||||
duration=durations[index_min],
|
||||
)
|
||||
if (
|
||||
durations[index_min] > desired * 0.95
|
||||
and desired * 1.05 > durations[index_min]
|
||||
):
|
||||
return moment_results[index_min][0]
|
||||
|
||||
iterations = iterations + parallelism
|
||||
if iterations > 50000:
|
||||
self.logger.warn(
|
||||
"could not find a viable edit in the target duration, try other params",
|
||||
target=desired,
|
||||
)
|
||||
return []
|
||||
spread_multiplier = spread_multiplier - spread_decay
|
||||
if spread_multiplier < 0:
|
||||
self.logger.warn("spread reached 0, resetting")
|
||||
large_window_center = random.uniform(30, 50)
|
||||
small_window_center = random.uniform(5, 15)
|
||||
spread_multiplier = random.uniform(0.15, 0.18)
|
||||
spread_decay = random.uniform(0.0001, 0.001)
|
||||
|
Loading…
Reference in New Issue
Block a user