refactor editors to move core logic into the editors themselves
This commit is contained in:
parent
8787caed83
commit
174a828988
107
main.py
107
main.py
@ -1,26 +1,22 @@
|
|||||||
import argparse
|
import argparse
|
||||||
import concurrent.futures
|
|
||||||
import hashlib
|
import hashlib
|
||||||
import multiprocessing
|
import multiprocessing
|
||||||
import random
|
|
||||||
import sys
|
import sys
|
||||||
import time
|
import time
|
||||||
from functools import partial
|
from functools import partial
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
|
||||||
import numpy as np
|
|
||||||
import structlog
|
import structlog
|
||||||
|
|
||||||
from src.utils.prereq import check_ffmpeg, install_ffmpeg
|
from src.utils.prereq import check_ffmpeg
|
||||||
|
|
||||||
check_ffmpeg()
|
check_ffmpeg()
|
||||||
|
|
||||||
from src.editors.amplitude.editor import AmplitudeEditor
|
from src.editors.amplitude.editor import AmplitudeEditor
|
||||||
from src.editors.sentiment.editor import SentimentEditor
|
from src.editors.sentiment.editor import SentimentEditor
|
||||||
from src.math.cost import quadratic_loss
|
from src.math.cost import quadratic_loss
|
||||||
from src.math.distribution import create_distribution
|
|
||||||
from src.mediautils.audio import extract_audio_from_video
|
from src.mediautils.audio import extract_audio_from_video
|
||||||
from src.mediautils.video import filter_moments, render_moments
|
from src.mediautils.video import render_moments
|
||||||
|
|
||||||
log = structlog.get_logger()
|
log = structlog.get_logger()
|
||||||
|
|
||||||
@ -90,91 +86,26 @@ def main(args):
|
|||||||
costfunc = ERROR_FUNCS[args.cost]
|
costfunc = ERROR_FUNCS[args.cost]
|
||||||
desired = args.duration
|
desired = args.duration
|
||||||
|
|
||||||
# Generate center of large window and small window size
|
result = []
|
||||||
large_window_center = random.uniform(30, 50)
|
|
||||||
small_window_center = random.uniform(5, 15)
|
|
||||||
|
|
||||||
# The spread multiplier, or epsilon, slowly decays as we approach the center of the gradient
|
|
||||||
spread_multiplier = random.uniform(0.15, 0.18)
|
|
||||||
|
|
||||||
# The decay rate, or how quickly our spread multiplier decreases as we approach the center of the gradient
|
|
||||||
spread_decay = random.uniform(0.000001, 0.0001)
|
|
||||||
|
|
||||||
parallelism = args.parallelism
|
|
||||||
|
|
||||||
# The main loop of the program starts here
|
|
||||||
# we first create distributions
|
|
||||||
# use workers to simultanously create many possible edits
|
|
||||||
# find the best edit of the lot -> this is determined by lowest "cost"
|
|
||||||
# if the best fits within our desitred time range, output, otherwise
|
|
||||||
# reset the distributions using the best as the new center, then repeat
|
|
||||||
# Create distribution of large and small
|
|
||||||
|
|
||||||
complete = False
|
|
||||||
iterations = 0
|
|
||||||
while not complete:
|
|
||||||
large_distribution = create_distribution(
|
|
||||||
large_window_center, spread_multiplier, parallelism
|
|
||||||
)
|
|
||||||
np.random.shuffle(large_distribution)
|
|
||||||
small_distribution = create_distribution(
|
|
||||||
small_window_center, spread_multiplier, parallelism
|
|
||||||
)
|
|
||||||
np.random.shuffle(small_distribution)
|
|
||||||
|
|
||||||
# Fire off workers to generate edits
|
|
||||||
moment_results = []
|
|
||||||
with concurrent.futures.ThreadPoolExecutor() as executor:
|
|
||||||
futures = []
|
|
||||||
pairs = list(zip(large_distribution, small_distribution))
|
|
||||||
for pair in pairs:
|
|
||||||
futures.append(
|
|
||||||
executor.submit(
|
|
||||||
editor.edit,
|
|
||||||
pair[0] if pair[0] > pair[1] else pair[1],
|
|
||||||
pair[1] if pair[0] > pair[1] else pair[0],
|
|
||||||
vars(args),
|
|
||||||
)
|
|
||||||
)
|
|
||||||
for future in concurrent.futures.as_completed(futures):
|
|
||||||
try:
|
try:
|
||||||
moment_results.append(list(future.result()))
|
result = editor.full_edit(costfunc, desired, vars(args))
|
||||||
except Exception:
|
except Exception as e:
|
||||||
log.exception("error during editing")
|
log.fatal("there was an error during editing the video", error=e)
|
||||||
|
sys.exit(-1)
|
||||||
|
|
||||||
|
if len(result) == 0:
|
||||||
|
log.fatal("no viable edit was found for the provided parameters, please try again with different values")
|
||||||
sys.exit(-2)
|
sys.exit(-2)
|
||||||
moment_results
|
|
||||||
costs = []
|
|
||||||
durations = []
|
|
||||||
for result in moment_results:
|
|
||||||
total_duration = 0
|
|
||||||
result[0] = filter_moments(result[0], args.mindur, args.maxdur)
|
|
||||||
for moment in result[0]:
|
|
||||||
total_duration = total_duration + moment.get_duration()
|
|
||||||
costs.append(costfunc(desired, total_duration))
|
|
||||||
durations.append(total_duration)
|
|
||||||
index_min = min(range(len(costs)), key=costs.__getitem__)
|
|
||||||
large_window_center = moment_results[index_min][1]
|
|
||||||
small_window_center = moment_results[index_min][2]
|
|
||||||
log.info(
|
|
||||||
"batch complete",
|
|
||||||
best_large=large_window_center,
|
|
||||||
best_small=small_window_center,
|
|
||||||
duration=durations[index_min],
|
|
||||||
)
|
|
||||||
if (
|
|
||||||
durations[index_min] > desired * 0.95
|
|
||||||
and desired * 1.05 > durations[index_min]
|
|
||||||
):
|
|
||||||
log.info(
|
log.info(
|
||||||
"found edit within target duration",
|
"found edit within target duration",
|
||||||
target=desired,
|
target=desired,
|
||||||
duration=durations[index_min],
|
|
||||||
)
|
)
|
||||||
out_path = Path(args.destination)
|
out_path = Path(args.destination)
|
||||||
log.info("rendering...")
|
log.info("rendering...")
|
||||||
start = time.time()
|
start = time.time()
|
||||||
render_moments(
|
render_moments(
|
||||||
moment_results[index_min][0],
|
result,
|
||||||
str(in_vid_path.resolve()),
|
str(in_vid_path.resolve()),
|
||||||
str(out_path.resolve()),
|
str(out_path.resolve()),
|
||||||
intro_path=intro_file,
|
intro_path=intro_file,
|
||||||
@ -186,20 +117,6 @@ def main(args):
|
|||||||
output=str(out_path.resolve()),
|
output=str(out_path.resolve()),
|
||||||
)
|
)
|
||||||
sys.exit(0)
|
sys.exit(0)
|
||||||
iterations = iterations + parallelism
|
|
||||||
if iterations > 50000:
|
|
||||||
log.error(
|
|
||||||
"could not find a viable edit in the target duration, try other params",
|
|
||||||
target=desired,
|
|
||||||
)
|
|
||||||
sys.exit(-4)
|
|
||||||
spread_multiplier = spread_multiplier - spread_decay
|
|
||||||
if spread_multiplier < 0:
|
|
||||||
log.warn("spread reached 0, resetting")
|
|
||||||
large_window_center = random.uniform(30, 50)
|
|
||||||
small_window_center = random.uniform(5, 15)
|
|
||||||
spread_multiplier = random.uniform(0.15, 0.18)
|
|
||||||
spread_decay = random.uniform(0.0001, 0.001)
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
|
@ -1,9 +1,13 @@
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
import structlog
|
import structlog
|
||||||
|
import random
|
||||||
|
import concurrent.futures
|
||||||
|
|
||||||
from ...math.average import np_moving_average
|
from ...math.average import np_moving_average
|
||||||
|
from ...math.distribution import create_distribution
|
||||||
from ...mediautils.audio import process_audio, resample
|
from ...mediautils.audio import process_audio, resample
|
||||||
from ..common import find_moving_average_highlights
|
from ..common import find_moving_average_highlights
|
||||||
|
from ...mediautils.video import filter_moments
|
||||||
|
|
||||||
|
|
||||||
class AmplitudeEditor:
|
class AmplitudeEditor:
|
||||||
@ -33,3 +37,100 @@ class AmplitudeEditor:
|
|||||||
short_ma, long_ma, self.factor / self.bitrate
|
short_ma, long_ma, self.factor / self.bitrate
|
||||||
)
|
)
|
||||||
return highlights, large_window, small_window
|
return highlights, large_window, small_window
|
||||||
|
|
||||||
|
def full_edit(self, costfunc, desired_time, params):
|
||||||
|
desired = desired_time
|
||||||
|
|
||||||
|
# Generate center of large window and small window size
|
||||||
|
large_window_center = random.uniform(30, 50)
|
||||||
|
small_window_center = random.uniform(5, 15)
|
||||||
|
|
||||||
|
# The spread multiplier, or epsilon, slowly decays as we approach the center of the gradient
|
||||||
|
spread_multiplier = random.uniform(0.15, 0.18)
|
||||||
|
|
||||||
|
# The decay rate, or how quickly our spread multiplier decreases as we approach the center of the gradient
|
||||||
|
spread_decay = random.uniform(0.000001, 0.0001)
|
||||||
|
|
||||||
|
parallelism = params['parallelism']
|
||||||
|
|
||||||
|
# The main loop of the program starts here
|
||||||
|
# we first create distributions
|
||||||
|
# use workers to simultanously create many possible edits
|
||||||
|
# find the best edit of the lot -> this is determined by lowest "cost"
|
||||||
|
# if the best fits within our desitred time range, output, otherwise
|
||||||
|
# reset the distributions using the best as the new center, then repeat
|
||||||
|
# Create distribution of large and small
|
||||||
|
|
||||||
|
complete = False
|
||||||
|
iterations = 0
|
||||||
|
while not complete:
|
||||||
|
large_distribution = create_distribution(
|
||||||
|
large_window_center, spread_multiplier, parallelism
|
||||||
|
)
|
||||||
|
np.random.shuffle(large_distribution)
|
||||||
|
small_distribution = create_distribution(
|
||||||
|
small_window_center, spread_multiplier, parallelism
|
||||||
|
)
|
||||||
|
np.random.shuffle(small_distribution)
|
||||||
|
|
||||||
|
# Fire off workers to generate edits
|
||||||
|
moment_results = []
|
||||||
|
with concurrent.futures.ThreadPoolExecutor() as executor:
|
||||||
|
futures = []
|
||||||
|
pairs = list(zip(large_distribution, small_distribution))
|
||||||
|
for pair in pairs:
|
||||||
|
futures.append(
|
||||||
|
executor.submit(
|
||||||
|
self.edit,
|
||||||
|
pair[0] if pair[0] > pair[1] else pair[1],
|
||||||
|
pair[1] if pair[0] > pair[1] else pair[0],
|
||||||
|
vars(params),
|
||||||
|
)
|
||||||
|
)
|
||||||
|
failed = None
|
||||||
|
for future in concurrent.futures.as_completed(futures):
|
||||||
|
try:
|
||||||
|
moment_results.append(list(future.result()))
|
||||||
|
except Exception as e:
|
||||||
|
self.logger.exception("error during editing", error=e)
|
||||||
|
failed = e
|
||||||
|
if failed is not None:
|
||||||
|
raise failed
|
||||||
|
costs = []
|
||||||
|
durations = []
|
||||||
|
for result in moment_results:
|
||||||
|
total_duration = 0
|
||||||
|
result[0] = filter_moments(result[0], params['mindur'], params['maxdur'])
|
||||||
|
for moment in result[0]:
|
||||||
|
total_duration = total_duration + moment.get_duration()
|
||||||
|
costs.append(costfunc(desired, total_duration))
|
||||||
|
durations.append(total_duration)
|
||||||
|
index_min = min(range(len(costs)), key=costs.__getitem__)
|
||||||
|
large_window_center = moment_results[index_min][1]
|
||||||
|
small_window_center = moment_results[index_min][2]
|
||||||
|
self.logger.info(
|
||||||
|
"batch complete",
|
||||||
|
best_large=large_window_center,
|
||||||
|
best_small=small_window_center,
|
||||||
|
duration=durations[index_min],
|
||||||
|
)
|
||||||
|
if (
|
||||||
|
durations[index_min] > desired * 0.95
|
||||||
|
and desired * 1.05 > durations[index_min]
|
||||||
|
):
|
||||||
|
return moment_results[index_min][0]
|
||||||
|
|
||||||
|
iterations = iterations + parallelism
|
||||||
|
if iterations > 50000:
|
||||||
|
self.logger.warn(
|
||||||
|
"could not find a viable edit in the target duration, try other params",
|
||||||
|
target=desired,
|
||||||
|
)
|
||||||
|
return []
|
||||||
|
spread_multiplier = spread_multiplier - spread_decay
|
||||||
|
if spread_multiplier < 0:
|
||||||
|
self.logger.warn("spread reached 0, resetting")
|
||||||
|
large_window_center = random.uniform(30, 50)
|
||||||
|
small_window_center = random.uniform(5, 15)
|
||||||
|
spread_multiplier = random.uniform(0.15, 0.18)
|
||||||
|
spread_decay = random.uniform(0.0001, 0.001)
|
||||||
|
@ -2,6 +2,9 @@ import json
|
|||||||
import tempfile
|
import tempfile
|
||||||
from dataclasses import dataclass
|
from dataclasses import dataclass
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
import random
|
||||||
|
import concurrent.futures
|
||||||
|
from ...math.distribution import create_distribution
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import structlog
|
import structlog
|
||||||
@ -11,6 +14,7 @@ from flair.models import TextClassifier
|
|||||||
|
|
||||||
from ...math.average import np_moving_average
|
from ...math.average import np_moving_average
|
||||||
from ..common import find_moving_average_highlights
|
from ..common import find_moving_average_highlights
|
||||||
|
from ...mediautils.video import filter_moments
|
||||||
|
|
||||||
|
|
||||||
@dataclass
|
@dataclass
|
||||||
@ -69,3 +73,100 @@ class SentimentEditor:
|
|||||||
short_ma, long_ma, 1.0 / window_factor
|
short_ma, long_ma, 1.0 / window_factor
|
||||||
)
|
)
|
||||||
return highlights, large_window, small_window
|
return highlights, large_window, small_window
|
||||||
|
|
||||||
|
def full_edit(self, costfunc, desired_time, params):
|
||||||
|
desired = desired_time
|
||||||
|
|
||||||
|
# Generate center of large window and small window size
|
||||||
|
large_window_center = random.uniform(30, 50)
|
||||||
|
small_window_center = random.uniform(5, 15)
|
||||||
|
|
||||||
|
# The spread multiplier, or epsilon, slowly decays as we approach the center of the gradient
|
||||||
|
spread_multiplier = random.uniform(0.15, 0.18)
|
||||||
|
|
||||||
|
# The decay rate, or how quickly our spread multiplier decreases as we approach the center of the gradient
|
||||||
|
spread_decay = random.uniform(0.000001, 0.0001)
|
||||||
|
|
||||||
|
parallelism = params['parallelism']
|
||||||
|
|
||||||
|
# The main loop of the program starts here
|
||||||
|
# we first create distributions
|
||||||
|
# use workers to simultanously create many possible edits
|
||||||
|
# find the best edit of the lot -> this is determined by lowest "cost"
|
||||||
|
# if the best fits within our desitred time range, output, otherwise
|
||||||
|
# reset the distributions using the best as the new center, then repeat
|
||||||
|
# Create distribution of large and small
|
||||||
|
|
||||||
|
complete = False
|
||||||
|
iterations = 0
|
||||||
|
while not complete:
|
||||||
|
large_distribution = create_distribution(
|
||||||
|
large_window_center, spread_multiplier, parallelism
|
||||||
|
)
|
||||||
|
np.random.shuffle(large_distribution)
|
||||||
|
small_distribution = create_distribution(
|
||||||
|
small_window_center, spread_multiplier, parallelism
|
||||||
|
)
|
||||||
|
np.random.shuffle(small_distribution)
|
||||||
|
|
||||||
|
# Fire off workers to generate edits
|
||||||
|
moment_results = []
|
||||||
|
with concurrent.futures.ThreadPoolExecutor() as executor:
|
||||||
|
futures = []
|
||||||
|
pairs = list(zip(large_distribution, small_distribution))
|
||||||
|
for pair in pairs:
|
||||||
|
futures.append(
|
||||||
|
executor.submit(
|
||||||
|
self.edit,
|
||||||
|
pair[0] if pair[0] > pair[1] else pair[1],
|
||||||
|
pair[1] if pair[0] > pair[1] else pair[0],
|
||||||
|
params,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
failed = None
|
||||||
|
for future in concurrent.futures.as_completed(futures):
|
||||||
|
try:
|
||||||
|
moment_results.append(list(future.result()))
|
||||||
|
except Exception as e:
|
||||||
|
self.logger.exception("error during editing", error=e)
|
||||||
|
failed = e
|
||||||
|
if failed is not None:
|
||||||
|
raise failed
|
||||||
|
costs = []
|
||||||
|
durations = []
|
||||||
|
for result in moment_results:
|
||||||
|
total_duration = 0
|
||||||
|
result[0] = filter_moments(result[0], params['mindur'], params['maxdur'])
|
||||||
|
for moment in result[0]:
|
||||||
|
total_duration = total_duration + moment.get_duration()
|
||||||
|
costs.append(costfunc(desired, total_duration))
|
||||||
|
durations.append(total_duration)
|
||||||
|
index_min = min(range(len(costs)), key=costs.__getitem__)
|
||||||
|
large_window_center = moment_results[index_min][1]
|
||||||
|
small_window_center = moment_results[index_min][2]
|
||||||
|
self.logger.info(
|
||||||
|
"batch complete",
|
||||||
|
best_large=large_window_center,
|
||||||
|
best_small=small_window_center,
|
||||||
|
duration=durations[index_min],
|
||||||
|
)
|
||||||
|
if (
|
||||||
|
durations[index_min] > desired * 0.95
|
||||||
|
and desired * 1.05 > durations[index_min]
|
||||||
|
):
|
||||||
|
return moment_results[index_min][0]
|
||||||
|
|
||||||
|
iterations = iterations + parallelism
|
||||||
|
if iterations > 50000:
|
||||||
|
self.logger.warn(
|
||||||
|
"could not find a viable edit in the target duration, try other params",
|
||||||
|
target=desired,
|
||||||
|
)
|
||||||
|
return []
|
||||||
|
spread_multiplier = spread_multiplier - spread_decay
|
||||||
|
if spread_multiplier < 0:
|
||||||
|
self.logger.warn("spread reached 0, resetting")
|
||||||
|
large_window_center = random.uniform(30, 50)
|
||||||
|
small_window_center = random.uniform(5, 15)
|
||||||
|
spread_multiplier = random.uniform(0.15, 0.18)
|
||||||
|
spread_decay = random.uniform(0.0001, 0.001)
|
||||||
|
Loading…
Reference in New Issue
Block a user