147 lines
5.3 KiB
Python
147 lines
5.3 KiB
Python
import argparse
|
|
import structlog
|
|
from functools import partial
|
|
from pathlib import Path
|
|
import sys
|
|
import hashlib
|
|
import random
|
|
import multiprocessing
|
|
import concurrent.futures
|
|
|
|
import numpy as np
|
|
|
|
from src.mediautils.audio import extract_audio_from_video
|
|
from src.editors.amplitude.editor import AmplitudeEditor
|
|
from src.editors.sentiment.editor import SentimentEditor
|
|
from src.math.distribution import create_distribution
|
|
|
|
log = structlog.get_logger()
|
|
|
|
EDITORS = {
|
|
'amplitude': AmplitudeEditor,
|
|
'sentiment': SentimentEditor
|
|
}
|
|
|
|
def main(args):
|
|
# Check video existance
|
|
input_file = args.file
|
|
in_vid_path = Path(input_file)
|
|
if not in_vid_path.is_file():
|
|
log.error("the specified input path does not exist", path=input_file)
|
|
sys.exit(-1)
|
|
log.info("preparing video", input_video=input_file)
|
|
|
|
# Hash the video, we use this to see if we have processed this video before
|
|
# and as a simple way to generate temp file names
|
|
sha1 = hashlib.sha1()
|
|
BUF_SIZE = 1655360
|
|
with open(in_vid_path, 'rb') as f:
|
|
while True:
|
|
data = f.read(BUF_SIZE)
|
|
if not data:
|
|
break
|
|
sha1.update(data)
|
|
temp_file_name = sha1.hexdigest()
|
|
log.info("hash computed", hash=temp_file_name)
|
|
temp_file_name = f"ale-{temp_file_name}"
|
|
|
|
# Prepare the input video
|
|
audio_path, audio_cached = extract_audio_from_video(str(in_vid_path.resolve()), temp_file_name)
|
|
if audio_cached:
|
|
log.info("using cached audio file", cache_path=audio_path)
|
|
else:
|
|
log.info("extracted audio", cache_path=audio_path)
|
|
|
|
# Initalize Editor
|
|
log.info("initializing editor", editor=args.editor)
|
|
editor = EDITORS[args.editor](str(in_vid_path.resolve()), audio_path, vars(args))
|
|
log.info("initialized editor", editor=args.editor)
|
|
|
|
# Generate center of large window and small window size
|
|
large_window_center = random.uniform(30, 50)
|
|
small_window_center = random.uniform(5, 15)
|
|
|
|
# The spread multiplier, or epsilon, slowly decays as we approach the center of the gradient
|
|
spread_multiplier = random.uniform(0.15, 0.18)
|
|
|
|
# The decay rate, or how quickly our spread multiplier decreases as we approach the center of the gradient
|
|
spread_decay = random.uniform(0.0001, 0.001)
|
|
|
|
log.info("creating distributions", large_start=large_window_center, small_start=small_window_center, spread=spread_multiplier, decay=spread_decay)
|
|
# Create distribution of large and small
|
|
parallelism = args.parallelism
|
|
large_distribution = create_distribution(large_window_center, spread_multiplier, parallelism)
|
|
np.random.shuffle(large_distribution)
|
|
small_distribution = create_distribution(small_window_center, spread_multiplier, parallelism)
|
|
np.random.shuffle(small_distribution)
|
|
|
|
with concurrent.futures.ThreadPoolExecutor() as executor:
|
|
futures = []
|
|
pairs = list(zip(large_distribution, small_distribution))
|
|
for pair in pairs:
|
|
futures.append(
|
|
executor.submit(
|
|
editor.edit,
|
|
pair[0],
|
|
pair[1],
|
|
vars(args)
|
|
)
|
|
)
|
|
for future in concurrent.futures.as_completed(futures):
|
|
value = future.result()
|
|
log.info("got val", val=value)
|
|
|
|
|
|
desired = args.duration
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser(
|
|
prog="ALE", description="ALE: Automatic Linear Editor.",
|
|
formatter_class=partial(argparse.HelpFormatter, width=100)
|
|
)
|
|
parser.add_argument('file', help='Path to the video file to edit')
|
|
parser.add_argument('duration', help='Target length of the edit, in seconds', type=int)
|
|
parser.add_argument('destination', help='Edited video save location')
|
|
subparsers = parser.add_subparsers(dest='editor', help='The editing algorithm to use')
|
|
|
|
parser_audio_amp = subparsers.add_parser('amplitude', help='The amplitude editor uses audio amplitude moving averages to find swings from relatively quiet moments to loud moments. This is useful in videos where long moments of quiet are interspersed with loud action filled moments.')
|
|
parser_audio_amp.add_argument(
|
|
"-f",
|
|
"--factor",
|
|
default=16000,
|
|
help="Subsampling factor",
|
|
dest="factor",
|
|
type=int,
|
|
)
|
|
|
|
parser_audio_amp = subparsers.add_parser('sentiment', help='The sentiment editor transcribes the speech in a video and runs sentiment analysis on the resulting text. Using moving averages, large swings in sentiment can be correlated to controversial or exciting moments.')
|
|
|
|
parser.add_argument("-d", "--dryrun", dest="drun", action="store_true")
|
|
parser.add_argument("-p", "--parallelism", dest="parallelism", type=int, default=multiprocessing.cpu_count() - 2, help="The number of cores to use, defaults to N - 2 cores.")
|
|
|
|
parser.add_argument(
|
|
"-i",
|
|
"--minduration",
|
|
default=8,
|
|
help="Minimum clip duration",
|
|
dest="mindur",
|
|
type=int,
|
|
)
|
|
parser.add_argument(
|
|
"-m",
|
|
"--maxduration",
|
|
default=15,
|
|
help="Maximum clip duration",
|
|
dest="maxdur",
|
|
type=int,
|
|
)
|
|
|
|
args = parser.parse_args()
|
|
try:
|
|
main(args)
|
|
except Exception:
|
|
log.exception("uncaught error!")
|
|
sys.exit(-2)
|
|
sys.exit(0)
|